Article | REF: AM8210 V1

Hyperelastic models for the mechanical response of elastomers

Author: Erwan VERRON

Publication date: March 10, 2018, Review date: October 25, 2023

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Français

ABSTRACT

Constitutive equations for the mechanical response of elastomers (also called rubbers) are based on hyperelastic models. Such models will predict large-strain non-linear elastic response. They are numerous, varied, and widely available in numerical tools for structural analysis. This article focuses on the engineering practice of these models. The theoretical framework of hyperelasticity is presented and the main models are detailed. Emphasis is laid on practical aspects: choosing the most suitable model, identifying its material parameters, and tackling the difficulties to be faced during numerical simulations.

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHOR

  • Erwan VERRON: University Professor - Institut de Recherche en Génie Civil et Mécanique (GeM), UMR CNRS 6183, École Centrale de Nantes, France

 INTRODUCTION

Elastomers, often referred to as rubbers in everyday language, are widely used in industry for anti-vibration applications, such as engine and exhaust mounts in the automotive industry, flexible bonding in naval applications, tires and seals .... These applications benefit from the particular mechanical behavior of these materials, characterized mainly by their ability to withstand very large reversible deformations (several hundred percent). Predicting the mechanical behavior of elastomers in finite element analysis software therefore requires the use of highly non-linear behavior models. This non-linearity is the result both of the large deformations that induce strong changes in geometry, and of the relationship between these deformations and stresses.

Hyperelasticity theory is the basis of all elastomer behavior models. It benefits from a rigorous theoretical framework and has been the subject of a large number of studies since 1940. From this mathematical framework, it is possible to define numerous models predicting the elastic response of elastomers in large deformations. These models are proving effective and are widely available in simulation software. However, their use by engineers in the design phase requires :

  • understanding their theoretical formulation;

  • development and/or operation of associated experimental trials;

  • implementation of techniques for identifying the parameters of these models from test results;

  • knowledge of dedicated numerical methods and the difficulties they entail.

The present article deals with these different aspects. In paragraph 1 , elastomers are briefly presented, along with the complexity of their mechanical behavior; the stress-strain curve, which hyperelastic models strive to reproduce, is defined. The necessary reminders of continuum mechanics in large transformations, in particular the definition of the various tensors of strain and stress, are proposed in paragraph

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

KEYWORDS

rubber   |   identification   |   imcompressibility   |   hyperelasticity


This article is included in

Plastics and composites

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Hyperelastic models for the mechanical behavior of elastomers