18. Random models with 3D surfaces
For surface objects, we use surface models, where the elementary random object is a surface. A surface in
is a set of points considered as a topological space, any "interior" point of which has an open neighborhood homeomorphic (bi-continuous bijection) to the unit ball of the Euclidean plane
. In this article, a surface (necessarily continuous by definition) will be topologically closed (i.e. it contains its possible edges), simple, not necessarily closed, rectifiable of finite area, and in some cases sufficiently smooth (i.e. of class
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
This article is included in
Mathematics
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Random models with 3D surfaces
Bibliography
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference