Article | REF: AF510 V1

Introduction to the fractional derivative

Authors: François DUBOIS, Ana Cristina GALUCIO, Nelly POINT

Publication date: April 10, 2010

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Français

7. Numerical approximation of the fractional derivative

Two finite-difference approximation methods are outlined here. The first approximation technique is linked to the Grünwald-Letnikov definition. It consists in approximating the fractional derivative by a decentered upstream finite-difference scheme, accurate to first order. The second method uses a second-order, off-center backward scheme. This is the G scheme α developed by Galucio et al. .

7.1 Grünwald-Letnikov diagram

Let u be a function of time known...

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Mathematics

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Numerical approximation of the fractional derivative