4. Algorithmic number theory
4.1 Factoring
We present Pollard's p – 1 algorithm. We aim to give the idea implemented in this algorithm rather than the details.
Let n be the number to be factorized. Let p be a prime factor of n : n = p k m
where m is prime to p and assume that all prime factors of p – 1 are less than a small bound R. Let us denote by , for each prime number q R, the integer...
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
This article is included in
Mathematics
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Algorithmic number theory
References
- - La lecture de cet article suppose du lecteur une certaine familiarité avec les structures algébriques (en particulier finies, c'est-à-dire avec un nombre fini d'éléments) telles que groupes, anneaux, corps. Nous avons essayé de redonner l'essentiel de ce qui est nécessaire au début. Un traitement plus complet est à rechercher dans
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference