Article | REF: AF1224 V1

Calculation of eigenvalues

Authors: Bernard PHILIPPE, Yousef SAAD

Publication date: October 10, 2008

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Français

7. Singular value decomposition

Singular value decomposition (SVD) has important applications in a wide variety of scientific fields. This decomposition can be seen as a generalization of the spectral decomposition of a Hermitian matrix, which is a decomposition of A into a product of the form A = U DU H where U is unitary and D diagonal. However, the SVD decomposition exists for any matrix, even in the case of rectangular matrices.

Theorem 13

For any matrix Am×n , there exist orthogonal matrices

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Mathematics

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Singular value decomposition
Outline