Présentation

Article

1 - COUPLAGE ET RÉCIPROCITÉ

2 - CIRCUITS ACOUSTIQUES

3 - AMORTISSEMENT DES MEMBRANES

4 - DIRECTIVITÉ D’UN TRANSDUCTEUR

Article de référence | Réf : E5150 v1

Circuits acoustiques
Introduction à l’électroacoustique - Transduction électroacoustique

Auteur(s) : Jacques JOUHANEAU

Relu et validé le 01 janv. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Jacques JOUHANEAU : Professeur au Conservatoire National des Arts et Métiers (CNAM)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le transducteur est un système qui transforme l’énergie reçue sous une forme donnée (par exemple : mécanique, thermique, lumineuse…) en énergie utilisable sous une forme différente (par exemple : acoustique, électrique…).

Ainsi un transducteur électroacoustique transforme une énergie acoustique (onde sonore) en énergie électrique (signal).

Un tel transducteur est dit linéaire quand, pour une fréquence donnée, la grandeur recueillie aux bornes de sortie est proportionnelle à la grandeur agissant sur l’entrée (figure 1).

Ce transducteur est dit réversible si, alimenté par une source électrique, il est capable de fournir une énergie acoustique.

Ce transducteur est dit réciproque si, lors de son fonctionnement réversible, il constitue une source de débit q (m3/s ) proportionnelle au courant d’excitation i (A ) telle que : q / i = u / p.

Les microphones et les haut-parleurs sont des transducteurs électroacoustiques réversibles. Ils sont réciproques tant qu’ils fonctionnent dans leurs limites de linéarité.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e5150


Cet article fait partie de l’offre

Le traitement du signal et ses applications

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

2. Circuits acoustiques

Comme le montrent les divers exemples numériques développés dans l’article Microphones [E 5 160] de ce traité, un transducteur de pression constitué uniquement d’un système couplé mécanoélectrique ne peut fonctionner linéairement que dans une gamme de fréquences très réduite. L’utilisation d’un tel transducteur en microphone (ou en haut-parleur), susceptible de fonctionner de façon homogène sur toute l’étendue du spectre audible, ne peut être envisagée qu’après l’adjonction de circuits acoustiques parfaitement adaptés aux performances désirées.

Ces circuits acoustiques sont constitués principalement d’éléments générateurs d’inerties (effets inductifs), de compliances (effets capacitifs) et d’amortissements (effets résistifs). Les effets d’inertie et de compliance sont générés principalement par les conduits et les cavités. Les effets d’amortissement sont dus à la présence de structures ou de matériaux induisant une dissipation d’énergie par frottement.

Le comportement des ondes stationnaires dans les conduits et les cavités dépend essentiellement de la longueur d’onde du signal.

Tant que la longueur d’onde est grande devant leurs dimensions, ils se comportent comme des éléments réactifs analogues à ceux d’un circuit à constantes localisées (termes en jm ω et k m /jω ). On dit alors que ces circuits travaillent dans l’approximation basse fréquence et l’on admet qu’ils peuvent être représentés par des schémas électriques équivalents (article Microphones [E 5 160]).

2.1 Impédances acoustiques des conduits

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le traitement du signal et ses applications

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Circuits acoustiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BERANEK (L.L.) -   Acoustics.  -  McGraw-Hill (1954).

  • (2) - OLSON (H.F.) -   Acoustical Engineering.  -  Van Nostrand, Princeton, NJ (1957).

  • (3) - ROSSI (M.) -   Électroacoustique.  -  Presses polytechniques romandes (1986).

  • (4) - ZUCKERWAR (A.J.) -   Theoretical Response of Condenser Microphones.  -  J. Acoust. Soc. Am., Vol 64, no 5, nov. 1978.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Le traitement du signal et ses applications

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS