Présentation
En anglaisRÉSUMÉ
Cet article traite des bases de données spécifiques, nommées entrepôts de données et utilisées par les applications d’aide à la décision. L’exploitation des entrepôts de données obéit à des procédures particulières qui les différencient des bases de données. L’extraction des données d’un entrepôt réclame une sélection des données pertinentes de par la grande diversité des sources. Leur structuration impose des modèles tridimensionnels, et leur manipulation nécessite des logiciels d’analyse de données.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Claude CHRISMENT : Professeur à l’université Toulouse-3
-
Geneviève PUJOLLE : Maître de conférences à l’université Toulouse-1
-
Franck RAVAT : Maître de conférences à l’université Toulouse-1
-
Olivier TESTE : Maître de conférences à l’université Toulouse-3
-
Gilles ZURFLUH : Professeur à l'université Toulouse-1
INTRODUCTION
Les entrepôts de données (ou « data warehouse ») sont des bases de données (BD) spécifiques utilisées par les applications d’aide à la décision.
La mise en place et l’exploitation d’un entrepôt au sein d’une entreprise suivent des processus particuliers, distincts des démarches utilisées pour l’élaboration des BD.
En ce qui concerne l’extraction des données, les entrepôts sont alimentés à partir de sources de données diverses telles que des BD, des fichiers et des documents web. Il convient de s’assurer de la cohérence de l’ensemble de ces données et de permettre leur mise à jour régulière (rafraîchissement) en accord avec les besoins des décideurs.
La structuration de l’entrepôt doit être adaptée à l’usage que l’on en fait. Les modèles de données utilisés pour structurer et manipuler les BD classiques sont généralement inadaptés aux entrepôts ; de nouveaux modèles multidimensionnels ont été proposés pour offrir aux décideurs une représentation simple des données.
La manipulation des données d’un entrepôt s’effectue souvent au travers de logiciels d’analyse de données. C’est pourquoi les données doivent être sélectionnées selon certains critères ou certaines dimensions grâce à des opérateurs ad hoc qui les agrègent ou, au contraire, les répartissent selon les axes d’étude.
Enfin, l’évolution de l’entrepôt n’est pas uniquement liée aux extractions des données qu’il reçoit régulièrement des sources. Son schéma peut aussi être modifié au fil du temps pour s’adapter à l’évolution des processus d’analyse.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Bases de données > Entrepôts de données > L’exemple d’Oracle
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. L’exemple d’Oracle
La tendance suivie actuellement par la majorité des constructeurs de logiciels en décisionnel, est de proposer une offre complète couvrant toute la chaîne logicielle nécessaire à l’élaboration d’un système décisionnel constitué d’un entrepôt et de magasins multidimensionnels. Parmi ces acteurs, nous citons Oracle dont l’offre comporte :
-
un logiciel de stockage des données avec Oracle Application Server ;
-
un logiciel de type ETL (extract, transform, load ou extraction, transformation, chargement) avec Oracle Warehouse Builder ;
-
un logiciel d’interrogation, d’analyse et de reporting avec Oracle Discoverer.
Nous présentons ici le principe général de l’ETL Oracle Warehouse Builder qui permet de définir et de construire une base de données cible à partir de sources de données (BD, fichiers, etc.).
Dans ce logiciel, la constitution d’un système décisionnel est organisée au sein d’un projet. Ce dernier comprend un ensemble de modules ; chaque module représente une base de données source ou cible. Un module, comme l’illustre la figure 18, est défini au travers d’un ensemble d’objets : tables, vues, vues matérialisées, transformations PL/SQL, séquences, faits, dimensions, mapping, c’est-à-dire des processus d’extraction.
La constitution d’un module source est produite automatiquement par l’ETL lors d’une phase dite d’importation, qui consiste à extraire les descriptions de la structure de la source (métadonnées) et d’en donner une représentation relationnelle dans l’outil.
La définition du module cible s’effectue en deux temps :
-
définition du schéma cible. La construction d’un schéma multidimensionnel est effectuée au travers des faits, des dimensions ;
-
définition des processus d’extraction. Ces derniers sont mis en place grâce aux mappings qui permettent d’expliciter le processus d’extraction et de transformation à effectuer pour alimenter les objets cibles (faits et dimensions) à partir des objets sources (tables), de séquences et de transformations PL/SQL.
La figure 19 présente le mapping d’une dimension MAGASINS_DM à partir de deux relations nommées GEOGRAPHIE et MAGASINS. Ce mapping est constitué...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
L’exemple d’Oracle
BIBLIOGRAPHIE
-
(1) - AGRAWAL (R.), GUPTA (A.), SARAWAGI (S.) - Modeling Multidimensional Databases - . Research Report, IBM Almaden Research Center, San Jose, Californie (1995). Paru dans les actes de ICDE’97.
-
(2) - GYSSEN (M.), LAKSHMANAN (L.V.S.) - A Foundation for Multi-Dimensional Databases - . 23rd International Conference on Very Large Data Bases – VLDB’97, Athènes, Grèce (25 au 29 août 1997).
-
(3) - INMON (W.H.) - Building the Data Warehouse - . Wiley (2002).
-
(4) - KIMBALL (R.), ROSS (M.) - Entrepôts de données. Guide pratique de modélisation dimensionnelle - . Vuibert (2003).
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cette liste n’est pas exhaustive.
Oracle http://www.oracle.com
-
Requêteurs
Impromptu, Cognos http://www.cognos.com/impromptu
Business Objects, Business Objects SA http://www.businessobjects.com
Discoverer, Oracle http://www.oracle.com/technology/products/discoverer
-
Requêteurs avec rapport via un navigateur
WebIntelligence, Business Objects SA http://www.businessobjects.com
Impromptu Web Reports, Cognos http://www.cognos.com/impromptu
-
Outils d’analyse OLAP
Oracle OLAP, Oracle http://www.oracle.com/technology/products/bi/olap/olap.html
Microsoft SQL Server, Microsoft http://www.microsoft.com/sql
-
Outils graphiques d’analyse OLAP
PowerPlay, Cognos http://www.cognos.com/products/business_intelligence/analysis
Business Objects, Business Objects SA http://www.businessobjects.com
-
Outils ETL
Oracle Warehouse Builder, Oracle http://www.oracle.com/technology/products/warehouse
DataStage, Ascential http://www.ascential.com/products/datastage.html
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(239 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive