Présentation
EnglishRÉSUMÉ
Les lidars rétrodiffusion aérosols nuages (LRAN) sont utilisés au sein des réseaux de mesures sol pour les applications atmosphériques : pollution, météorologie, climat. Dans cet article, les simulateurs de performance sont présentés en tant qu’outils pour la conception et la réalisation des instruments. Ensuite, le milieu atmosphérique et les méthodes standard d’inversion du signal LRAN sont détaillés en vue des applications.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre H. FLAMANT : Directeur de recherche émérite (DREM) au CNRS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UMR 8190, Sorbonne Université, UPMC, Paris, France
INTRODUCTION
Les applications des lidars atmosphériques et météorologiques concernent : la pollution dans les premiers kilomètres de l’atmosphère, la météorologie dans la troposphère et la basse stratosphère jusqu’à une trentaine de kilomètres d’altitude, et le climat jusqu’à une cinquantaine de kilomètres d’altitude incluant la couche d’ozone protectrice. Les lidars sont en compétition avec d’autres méthodes de mesure, mais c’est bien le besoin d’informations nouvelles dans la profondeur de l’atmosphère qui les a imposés pour les applications.
Les grandeurs recherchées sont la composition de l’air en particules et des gaz minoritaires (pollution, effet de serre, couche d’ozone), les variables dynamiques (champs de vent) et thermodynamiques (vapeur d’eau, température). Des méthodes lidar différentes sont mises en œuvre suivant les objectifs scientifiques.
Cet article traite des lidars rétrodiffusion aérosols nuages (LRAN). Il fait suite à l’article [E 4 310]qui présente les principes fondamentaux et les techniques mises en œuvre pour les lidars atmosphériques et météorologiques. Les lidars pour la mesure de la vapeur d’eau, de l’ozone, des polluants gazeux, des gaz à effet de serre et du champ de vent sont traitées dans l’article [E 4 313].
Au début des années 2000, les opérateurs lidar européens se sont regroupés au sein du réseau EARLINET spécifique aux aérosols. Partant de là, il est certain que le développement des réseaux d’une part, et l’avènement des lidars dans l’espace d’autre part, ont modifié la pratique lidar et la structure de la communauté, qui est passée d’une recherche individuelle à des observations coordonnées avec la transmission rapide des données aux utilisateurs. Ce faisant, les compétences de la communauté lidar se sont diversifiées. Certaines équipes ont conservé l’expertise multidisciplinaire et la capacité d’innovation, quand d’autres ont suivi une démarche appliquée par l’acquisition d’instruments commerciaux pour se concentrer sur l’utilisation des données. À présent, les données lidar sont utilisées au même titre que toutes les données en accès libre sur internet. Dans ce contexte, il est important que les utilisateurs de données lidar puissent disposer des trois articles proposés par les Techniques de l’Ingénieur, [E 4 310], [E 4 313], et cet article en question présentant les instruments lidar, les méthodes de traitement des signaux et les applications.
Le lecteur trouvera en fin d’article un glossaire, un tableau des sigles, des constantes et des symboles utilisés.
VERSIONS
- Version archivée 1 de janv. 2010 par Pierre H. FLAMANT
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Applications des lasers > Lidars atmosphériques et météorologiques - Lidar rétrodiffusion aérosols nuages (LRAN) > Conclusion
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Systèmes optroniques > Lidars atmosphériques et météorologiques - Lidar rétrodiffusion aérosols nuages (LRAN) > Conclusion
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Applications radars > Lidars atmosphériques et météorologiques - Lidar rétrodiffusion aérosols nuages (LRAN) > Conclusion
Accueil > Ressources documentaires > Ingénierie des transports > Systèmes aéronautiques et spatiaux > Astronautique et technologies spatiales > Lidars atmosphériques et météorologiques - Lidar rétrodiffusion aérosols nuages (LRAN) > Conclusion
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
22. Conclusion
Cet article présente les méthodes lidar rétrodiffusion aérosols nuages (LRAN) en s’appuyant sur les informations fournies dans l’article [E 4 310]. Les simulateurs lidar utilisés pour élaborer les instruments LRAN ont été présentés en soulignant leur importance tout au long d’un projet pour améliorer la conception et corriger d’éventuelles difficultés.
Ensuite, les méthodes standards d’inversion des signaux LRAN ont été détaillées. Les autres méthodes d’inversion ont été traitées de manière succincte. Il en a été de même des problèmes de représentation des signaux lidar avec diffusions multiples.
Par le passé, un lidar était conçu avec les moyens du bord pour une application spécifique. Depuis le début des années 2000, et en prenant appui sur des développements techniques importants, la tendance est de développer des lidars multifonctions, par exemple LRAN et Raman. Cette approche a montré toute son efficacité pour les applications. À présent, le métier de concepteur/développeur lidar est d’assembler au mieux en termes de performance et de coût des composants commerciaux de qualité.
Le réseau EARLINET européen qui existe depuis les années 2000 a permis de renforcer la coopération entre opérateurs et utilisateurs, et d’intervenir efficacement dans les recherches sur la pollution atmosphérique, la météorologie et le climat. De plus, compte tenu des lidars aéroportés et spatiaux existants et en développement, la communauté lidar peut être confiante dans son avenir pour continuer ses activités de recherche et de surveillance de l’environnement, et pour envisager les applications futures en réponse aux problèmes de société plus complexes.
Le professeur Gérard MÉGIE a été le pionnier pour le développement des lidars en France au début des années 1970. De 1988 à 1996, il a présidé la Commission internationale de l’ozone et s’est impliqué...
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - FUJII (T.), FUKUCHI (T.) - Laser remote sensing, - Taylor & Francis, Boca Raton, FL, USA (Ed.) (2005).
-
(2) - HINKLEY (E.D.) - Laser monitoring of the atmosphere, - Springer-Verlag, Berlin (Ed.) (1976).
-
(3) - KOVALEV (V.A.), EICHINGER (W.E.) - Elastic Lidar, - John Wiley and Sons, New York (2004).
-
(4) - MEASURES (R.M.) - Laser remote sensing, - Springer, Berlin (1978).
-
(5) - WEITKAMP (C.) - Lidar, - Springer, Berlin, Ed. (2005).
-
(6) - LAKKIS (S.), LAVORATO (M.), CANZIANI (P.) - Tropopause and Cirrus Clouds Tops Heights, - Revista de Climatologia, 10, 21-27 (2010).
-
...
DANS NOS BASES DOCUMENTAIRES
-
Lidars atmosphériques et météorologiques. Principes généraux.
-
Lidars atmosphériques et météorologiques.
-
Caractérisation électro-optiques des détecteurs plans focaux IR.
ANNEXES
1.1 Sites instrumentés français avec des lidars
Qualair à l’UPMC (Paris) : http://qualair.aero.jussieu.fr
SIRTA, à l’Ecole Polytechnique (Palaiseau) : http://sirta.ipsl.fr/
LOA à Lille : http://www-loa.univ-lille1.fr/
OPGC à Clermont-Ferrand : http://www.opgc.fr
Observatoire de Haute Provence (OHP) : http://www.obs-hp.fr/
Observatoire Atmosphérique de l’ile de la Réunion (LACY) : https://lacy.univ-reunion.fr/
Observatoire Dumont d’Urville, Antarctique : http://www.ndaccdemo.org/stations/dumont-d’urville-antarctica
HAUT DE PAGECet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive