Présentation
En anglaisRÉSUMÉ
La statistique bayésienne correspond à une approche cohérente et surtout pratique de la résolution des problèmes d'inférence statistique. Les fondements historiques de cette discipline, ainsi que ses justifications théoriques et philosophiques, ne seront pas présentés ici. L'objet de cet article est au contraire de démontrer que cette approche de l'inférence statistique est moderne, adaptée aux outils informatiques de simulation et apte à répondre aux problèmes de modélisation les plus avancés dans toutes les disciplines, plutôt que de l'ancrer sur ses querelles du passé. Dans une première partie, seront présentés les fondements de l'inférence bayésienne, en insistant sur les spécificités de la modélisation a priori et de la construction des tests. Puis, seront explicités les concepts précédemment introduits dans le cas pratique d'un modèle de régression linéaire.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The Bayesian statistics method is a coherent and most importantly practical approach to the resolution of statistical inference problems. The historical foundations of this discipline, as well as its theoretical and philosophical grounding, are not presented in this article. The objective is, rather than to focus on past disputes concerning this method, to demonstrate that such an approach is modern, adapted to computer simulation tools and able to meet the most advanced modeling issues in every discipline. The bases of Bayesian inference is firstly presented highlighting the specificities of a priori modeling and test construction. It then proceeds to clarifying the previously presented models using the practical framework of a linear regression model.
Auteur(s)
-
Jean-Michel MARIN : Institut de mathématiques et de modélisation, université Montpellier 2 et CREST, INSEE, Paris
-
Christian P. ROBERT : Ceremade, université Paris Dauphine et CREST, INSEE, Paris
INTRODUCTION
Dans ce court texte de présentation de la statistique bayésienne, nous nous attachons à démontrer qu'il s'agit d'une approche cohérente et surtout pratique pour résoudre les problèmes d'inférence statistique. Les fondements historiques de cette discipline, ainsi que ses justifications théoriques et philosophiques, ne seront pas présentés ici, le lecteur étant renvoyé pour cela aux ouvrages de référence cités en Statistique bayésienne : les bases[Doc AF 605] que sont Bernardo et Smith (1994) ; Carlin et Louis (2001) ; Gelman et al. (2001) et Robert (2007) (ou Robert (2006) pour la version française). Notre objet est au contraire de démontrer que cette approche de l'inférence statistique est moderne, adaptée aux outils informatiques de simulation et apte à répondre aux problèmes de modélisation les plus avancés dans toutes les disciplines, plutôt que de l'ancrer sur ses querelles du passé. Dans une première partie, nous présentons les fondements de l'inférence bayésienne, en insistant sur les spécificités de la modélisation a priori et de la construction des tests. Puis, nous mettons en œuvre explicitement les concepts précédemment introduits dans le cas pratique d'un modèle de régression linéaire.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Buts et contraintes de l'inférence statistique
1.1 Formalisme
Avant de mettre en place les éléments nécessaires à la construction d'une machine inférentielle bayésienne, nous considérons tout d'abord quels sont les points essentiels définissant la science statistique. Son but fondamental est, partant d'observations d'un phénomène aléatoire, de mener une inférence, soit donc une déduction logique sur le mécanisme probabiliste conduisant à ce phénomène. Cette méthodologie a pour objectif final de fournir une analyse (ou une description) d'un phénomène passé, ou bien une prévision d'un phénomène à venir (et de même nature).
Exemple d'inférence statistique : on peut citer celui de la classification supervisée où, à l'aide d'un échantillon constitué d'individus ou d'objets regroupés en classes, on construit un modèle prédictif pour tout individu ou objet du même type dont on ne connaît pas la classe, le nouvel individu ou objet étant associé à la classe la plus probable (diagnostic médical, reconnaissance de caractères...).
Il va de soi que les étapes nécessaires au recueil des données comme la construction de plans de sondage ou d'expérience font aussi partie du domaine de la statistique et que l'approche bayésienne peut également apporter un éclairage nouveau sur ces opérations.
Exemple : on peut ainsi citer le cadre des modèles de capture-recapture où une population animale est recensée au travers d'épisodes successifs de capture-marquage-recapture qui se ramènent tous à des observations binomiales (, chapitre 5), ou celui de la pharmacocinétique où les dosages à tester doivent être déterminés a priori au vu des connaissances préalables des expérimentateurs et des médecins.
L'approche statistique est par essence formelle (ou mathématiquement structurée) parce qu'elle repose sur une formalisation poussée de la réalité objective. En particulier, nous insistons ici sur...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Buts et contraintes de l'inférence statistique
BIBLIOGRAPHIE
-
(1) - BERNARDO (J.), SMITH (A.) - Bayesian theory - John Wiley, New York (1994).
-
(2) - BROWN (P.), VANNUCCI (M.), FEARN (T.) - Multivariate bayesian variable selection and prediction - J. Royal Statist. Society Series B, p. 627-641 (1998).
-
(3) - CARLIN (B.), LOUIS (T.) - Bayes and empirical Bayes methods for data analysis - Chapman and Hall, New York, 2e éd. (2001).
-
(4) - CASELLA (G.), MORENO (E.) - Objective bayesian variable selection - J. American Statist. Assoc., 101 (473), p. 157-167 (2006).
-
(5) - CELEUX (G.), MARIN (J.-M.), ROBERT (C.) - Sélection bayésienne de variables en régression linéaire - Journal de la Société Française de Statistique, 147 (1), p. 59-79 (2006).
-
(6) - CHIPMAN (H.) - Bayesian variable selection with related predictors - Canadian Journal...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive