Présentation
En anglaisAuteur(s)
-
Roland SOLIMANDO : Docteur en chimie-physique - Ingénieur de l’École supérieure de chimie de Marseille - Maître de conférences à l’ENSIC
-
Louis SCHUFFENECKER : Docteur ès sciences - Ingénieur de l’École nationale supérieure des industries chimiques (ENSIC-Nancy) - Directeur des formations à l’École des mines de Nancy (EMN) - Professeur à l’ENSIC et à l’EMN
-
Jean-Noël JAUBERT : Docteur en chimie-physique - Ingénieur de l’École supérieure de chimie de Marseille - Maître de conférences à l’ENSIC
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Bien que, dans la pratique, les applications industrielles concernent surtout les systèmes contenant un grand nombre d’espèces chimiques, il serait réducteur de considérer que l’ingénieur n’est pas intéressé par les systèmes monoconstituants. En effet, les propriétés d’un mélange sont calculées à partir des propriétés correspondantes des composés purs. Les principes et les grandeurs de base présentés dans l’article « Formalisme et principes de la thermodynamique » de ce traité permettent la description des propriétés thermodynamiques des substances pures.
La grandeur fondamentale, à partir de laquelle toutes les autres sont déduites, est le potentiel chimique qui permet de déterminer dans quelle phase (liquide, vapeur ou solide) va se trouver un corps pur dans des conditions de température et de pression données, et qui permet également de prévoir l’existence des différents équilibres entre ces phases (liquide/solide, liquide/vapeur, solide/vapeur, solide/solide).
Le formalisme mathématique employé pour calculer les propriétés thermodynamiques des corps purs est général quelle(s) que soit(ent) la(les) phase(s) considérée(s) : il consiste à considérer, dans un premier temps, les propriétés du composé supposé être un gaz parfait dans les conditions de l’expérience, puis à calculer les écarts à ces valeurs en utilisant les équations d’état permettant de décrire les propriétés volumétriques de la phase considérée.
Pour les généralités sur la Thermodynamique, le lecteur se reportera à l’articleFormalisme et principes de la thermodynamique Formalismes et principes de la Thermodynamique de ce traité (référence [1]).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Le gaz parfait
1.1 Définitions et intérêt du gaz parfait
Le gaz parfait est le modèle de fluide le plus simple qui puisse être envisagé. Il possède deux définitions complémentaires, suivant que l’on considère l’aspect macroscopique ou l’aspect microscopique. C’est également un fluide de référence dont les propriétés sont facilement calculables.
1.1.1 Définitions macroscopiques et microscopiques du gaz parfait
-
Au niveau macroscopique, un gaz parfait est un fluide pour lequel température T, pression P, volume V et quantité de matière n, sont reliés par la relation suivante (cf. Formalisme et principes de la thermodynamique § 4.3.6]) :
avec :
- R :
- constante des gaz parfaits (= 8,314 411 J · mol–1 · K–1).
Cette équation regroupe en fait les lois historiques énoncées par Boyle et Mariotte (invariance du produit PV à température constante), Gay-Lussac (proportionnalité entre pression et température à volume constant) et Charles (proportionnalité entre volume et température à pression constante).
Les coefficients thermoélastiques α, β et κT (cf. ...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Le gaz parfait
BIBLIOGRAPHIE
-
(1) - SCHUFFENECKER (L.), JAUBERT (J.-N.), SOLIMANDO (R.) - Formalisme et principe de la thermodynamique - . Formalisme et principes de la thermodynamique. Traité Sciences fondamentales (1999).
-
(2) - SCHUFFENECKER (L.), DELLACHERIE (J.) - Températures et enthalpies de fusion et d’ébullition normales des composés organiques. - K 570. Traité Constantes physico-chimiques (1992).
-
(3) - DELLACHERIE (J.), SOLIMANDO (R.) - Équilibres de phase des corps purs minéraux. - K 572. Traité Constantes physico-chimiques (1996).
-
(4) - REID (R.C.), PRAUSNITZ (J.M.), POLING (B.E.) - The properties of gases and liquids. - 4e édition. McGraw-Hill Book Company (1986).
-
(5) - DIAGSIM®rarr; - Logiciel permettant le tracé d’une centaine de diagrammes d’état dans le cas d’environ 800 corps purs. - École nationale supérieure des industries chimiques de Nancy. Laboratoire de thermodynamique des séparations.
-
...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive