Présentation
EnglishRÉSUMÉ
Le dépôt de couches organiques ultrafines (monocouches) sur une surface avec une interface robuste est essentiel pour de nombreuses applications où la fonctionnalisation donne au matériau une propriété spécifique. A cet effet, les méthodes de chimigreffage présentent un atout majeur et, particulièrement le greffage par réduction de sels d'aryldiazonium. L'efficacité de cette méthode est bien établie, mais un frein technologique subsiste, la possibilité de contrôler finement la formation d'une monocouche dense, compacte et post-fonctionnalisable. Une stratégie «diazonium» innovante est basée sur le greffage de composés pré-organisés, des calix[4]arènes. Applicable à une grande variété de matériaux, cette stratégie permet la formation de monocouches denses, compactes. En outre, les plateformes calixarènes permettent l'introduction d'objets moléculaires variés avec un contrôle spatial très fin.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Corinne LAGROST : Chargée de recherche au CNRS - Docteur en chimie de l'Université Paris-Diderot - Institut des Sciences chimiques de Rennes, UMR Université de Rennes 1 et CNRS no 6226, Rennes, France
-
Alice MATTIUZZI : Porteuse du projet FIRST Spin-off « MONOCAL » - Docteur en Sciences chimiques - Service de Chimie et physico-chimie organique, Laboratoire de Chimie organique, Université libre de Bruxelles, Bruxelles, Belgique
-
Ivans JABIN : Professeur - Service de Chimie et physico-chimie organiques, Laboratoire de Chimie Organique, Université Libre de Bruxelles, Bruxelles, Belgique
-
Philippe HAPIOT : Directeur de recherche au CNRS - Docteur en Chimie de l'Université Paris-Diderot - Institut des Sciences chimiques de Rennes, UMR Université de Rennes 1 et CNRS no 6226, Rennes, France
-
Olivia REINAUD : Professeur - Laboratoire de Chimie et biochimie pharmacologiques et toxicologiques, UMR Université Paris Descartes et CNRS no 8601, Paris, France
INTRODUCTION
Domaine : Revêtement de surfaces
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Fonctionnalisation des surfaces par réduction de sels d'aryldiazonium
Domaines d'application : Analyse, micro et nano-mécanique, micro-électronique, énergie, biotechnologies…
Principaux acteurs français :
Centres de compétence : Unités mixtes de recherche CNRS-Université (Rennes, Paris-Diderot, Angers, Bordeaux), CEA Saclay
Industriels : Cabot Corp., Alchimer, Angiogene, Sinomed
Autres acteurs dans le monde : Université d'Aarhus (Danemark), Université du Québec à Montréal (Canada), Université d'Alberta (Canada), Université de Canterbury (Nouvelle-Zélande)
Contact : [email protected], [email protected]
MOTS-CLÉS
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Traitements des métaux > Traitements de surface des métaux en milieu aqueux > Fonctionnalisation moléculaire des surfaces par réduction de sels d'aryldiazonium > Fonctionnalisation organique des surfaces
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Surfaces et structures fonctionnelles > Fonctionnalisation moléculaire des surfaces par réduction de sels d'aryldiazonium > Fonctionnalisation organique des surfaces
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanomatériaux : synthèse et élaboration > Fonctionnalisation moléculaire des surfaces par réduction de sels d'aryldiazonium > Fonctionnalisation organique des surfaces
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Innovations en génie des procédés > Fonctionnalisation moléculaire des surfaces par réduction de sels d'aryldiazonium > Fonctionnalisation organique des surfaces
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Fonctionnalisation organique des surfaces
Différentes approches ont été développées pour former des films organiques minces (1 μm à 100 nm) ou ultraminces (10 nm à 1 nm) sur des surfaces. On peut distinguer les méthodes dites de physisorption qui mettent en jeu des énergies de liaison faibles entre la surface et le film organique (de l'ordre de quelques kJ · mol–1) et les méthodes de chimisorption ou plutôt de chimigreffage pour lesquelles les valeurs énergétiques sont nettement plus conséquentes, de l'ordre de la centaine de kJ · mol–1. L'établissement d'une liaison chimique forte entre la surface et la couche organique est forcément un atout car elle garantit une plus grande stabilité de l'interface formée et donc une plus grande robustesse des couches. On a donc tout intérêt à privilégier la voie chimigreffage dans l'optique d'une fonctionnalisation de surface robuste. Il existe deux grandes catégories de procédés de chimigreffage : les procédés chimiques et les procédés électrochimiques.
2.1 Procédés chimiques
La surface est simplement mise en contact avec une solution contenant des molécules possédant une fonction terminale capable de réagir spontanément et très spécifiquement avec la surface (figure 1) .
Citons, par exemple, les acides gras (fonctions acides carboxyliques ) sur des oxydes d'aluminium ou des métaux ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Fonctionnalisation organique des surfaces
BIBLIOGRAPHIE
-
(1) - ULMANN (A.) - Formation and structure of self-assembled monolayers. - Chemical Reviews, vol. 96, p. 1533-1554 (1996).
-
(2) - ALLARA (D.L.), NUZZO (R.G.) - Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminium surface. - Langmuir, vol.1, p. 45-52 (1985).
-
(3) - ALLARA (D.L.), NUZZO (R.G.) - Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminium surface. - Langmuir, vol. 1, p. 45-56 (1985).
-
(4) - SCHLOTTER (N.E.), PORTER (M.D.), BRIGHT (T.B.), ALLARA (D.L.) - Formation and structure of a spontaneously adsorbed monolayer of arachidic on silver. - Chemical Physics Letters, vol. 132, p. 93-98 (1986).
-
(5) - LOVE CHRISTOPHER (J.), ESTROFF (L.A.), KRIEBEL (J.K.), NUZZO (R.G.), WHITESIDES (G.M.) - Self-assembled monolayers of thiolates on metals as a form of nanotechnology. - Chemical Review, vol. 105,...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Materials coated with calixarenes, European Patent EP 12164038 (2012).
HAUT DE PAGE
Compagnies industrielles
Cabot Corporation http://www.cabot-corp.com
Alchimer http://www.alchimer.com/
Sinomed http://www.sinomedical.net/
Pegastech http://www.pegastech.com
HAUT DE PAGECet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive