Présentation

Article

1 - ARITHMÉTIQUE DE L’ORDINATEUR

  • 1.1 - Virgule flottante normalisée
  • 1.2 - Opérations arithmétiques et conséquences
  • 1.3 - Conditionnement d’un problème
  • 1.4 - Correction de l’arithmétique

2 - INTERPOLATION

  • 2.1 - Polynôme d’interpolation et son calcul
  • 2.2 - Erreur d’interpolation
  • 2.3 - Choix des points d’interpolation
  • 2.4 - Convergence
  • 2.5 - Polynôme d’interpolation d’Hermite
  • 2.6 - Exemples d’interpolation non polynomiale
  • 2.7 - Fonctions splines

3 - QUADRATURE NUMÉRIQUE

  • 3.1 - Quadrature de type interpolation
  • 3.2 - Convergence et stabilité
  • 3.3 - Méthodes des trapèzes et de Romberg
  • 3.4 - Méthode de Gauss et polynômes orthogonaux

4 - INTÉGRATION DES ÉQUATIONS DIFFÉRENTIELLES

  • 4.1 - Définition du problème
  • 4.2 - Méthodes à pas séparés
  • 4.3 - Méthodes à pas liés
  • 4.4 - Problèmes aux limites

5 - APPROXIMATION

  • 5.1 - Meilleure approximation. Théorie
  • 5.2 - Meilleure approximation. Exemples
  • 5.3 - Approximation de Padé
  • 5.4 - Ondelettes

Article de référence | Réf : AF1220 v1

Arithmétique de l’ordinateur
Méthodes numériques de base - Analyse numérique

Auteur(s) : Claude BREZINSKI

Relu et validé le 19 nov. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’analyse numérique étudie les méthodes, appelées constructives, de résolution numérique des problèmes. Cet article débute par la présentation de la problématique posée par la programmation sur ordinateur des méthodes d’analyse numérique. Sont ensuite abordées successivement l’erreur d’interpolation, l’approche de la quadrature numérique, l’intégration des équations différentielles puis la théorie de l’approximation, qui constitue à elle seule une partie fondamentale de l’analyse numérique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Claude BREZINSKI : Docteur ès sciences mathématiques - Professeur à l’université des Sciences et Technologies de Lille

INTRODUCTION

Il est bien connu que les méthodes utilisées en mathématiques classiques sont incapables de résoudre tous les problèmes. On ne sait pas, par exemple, donner une formule pour calculer exactement le nombre x unique qui vérifie x = exp (– x) ; on ne sait pas non plus trouver la solution analytique de certaines équations différentielles ni calculer certaines intégrales définies. On remplace alors la résolution mathématique exacte du problème par sa résolution numérique qui est, en général, approchée. L’analyse numérique est la branche des mathématiques qui étudie les méthodes de résolution numérique des problèmes, méthodes que l’on appelle constructives. Par méthode constructive, on entend un ensemble de règles (on dit : algorithme) qui permet d’obtenir la solution numérique d’un problème avec une précision désirée après un nombre fini d’opérations arithmétiques.

L’analyse numérique est une branche assez ancienne des mathématiques. Autrefois, en effet, les mathématiciens développaient les outils dont ils avaient besoin pour résoudre les problèmes posés par les sciences de la nature. C’est ainsi que Newton était avant tout un physicien, Gauss un astronome… Ils s’aperçurent rapidement que les problèmes pratiques qui se posaient étaient trop compliqués pour leurs outils et c’est ainsi que, peu à peu, s’élaborèrent les techniques de l’analyse numérique. Ces méthodes ne connurent cependant leur essor actuel qu’avec l’avénement des ordinateurs à partir des années 1945-1947.

Ce qui suit n’est pas un cours théorique d’analyse numérique. Il existe d’excellents livres pour cela. Ce n’est pas non plus un catalogue de méthodes et de recettes. Pour être utilisées correctement et pour que leurs résultats soient interprétés correctement, les méthodes d’analyse numérique nécessitent une connaissance des principes de base qui ont guidé les mathématiciens ; il est très difficile, voire impossible, d’utiliser un algorithme d’analyse numérique comme une boîte noire. Pour ces raisons, une voie médiane a été choisie et les algorithmes sont toujours replacés dans leur contexte théorique ; le lecteur soucieux des démonstrations pourra se référer à la littérature correspondante.

Les méthodes d’analyse numérique sont destinées à être programmées sur ordinateur. L’arithmétique de l’ordinateur n’a qu’une précision limitée (par la technologie), ce qui pose souvent des problèmes extrêmement importants qu’il faut pouvoir analyser et éviter. C’est pour cela que le premier paragraphe est consacré à cette question.

Nota :

Il existe, naturellement, de très nombreux ouvrages d’analyse numérique. Comme références, on pourra consulter [2] [6] [22] [25] [30] [37] [40].

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1220


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Arithmétique de l’ordinateur

1.1 Virgule flottante normalisée

Soit a un nombre réel. On peut toujours l’écrire sous la forme :

a = ± 0, a1 a2 a3 … 10 q

avec :

q
 : 
nombre entier relatif
a1, a2 … a i
 : 
chiffres décimaux de a avec a1 ¹ 0.

On dit alors que a est écrit en virgule flottante normalisée. En général, la mantisse a 1 a 2 a 3 … de a possède une infinité de chiffres (on dit : digits ou bits).

Dans un ordinateur, chaque nombre est placé dans un mot. Un mot est un ensemble (fini) de petites cases qui peuvent contenir un 0 ou un 1 car les ordinateurs travaillent, pour des raisons technologiques, dans un système de numération dérivé du système binaire. Le problème qui se pose maintenant à nous est simple : comment placer un nombre ayant une infinité de digits dans un mot qui n’en comporte qu’un nombre fini ?

Il y a deux façons de procéder : la troncature ou l’arrondi. Supposons qu’un mot de l’ordinateur ne puisse contenir que t digits de la mantisse (pour simplifier le raisonnement, nous supposerons que notre ordinateur travaille lui aussi en base 10, ce qui ne changera pratiquement rien à nos conclusions). On peut tout simplement couper la mantisse de a après son t ième digit : c’est la troncature. On peut aussi, suivant la valeur du digit a t +1 , arrondir le digit a t : si at+15 , on remplacera at par a t +1 et l’on tronquera, sinon on tronquera directement. La plupart des ordinateurs travaillent en arrondi. Le nombre réel a est donc représenté dans l’ordinateur par une valeur approchée, que nous noterons...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Arithmétique de l’ordinateur
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS