Présentation
EnglishRÉSUMÉ
La topologie générale est la branche des mathématiques qui traite des notions fondamentales utilisées en topologie et de leurs propriétés Les intérêts théoriques et applicatifs se situent dans toutes les branches de l’analyse et de la géométrie, et aussi dans de nombreuses autres disciplines scientifiques non mathématiques. Cet article porte sur les espaces topologiques, et traite des notions de base de ces espaces, qui sont des ensembles dans lesquels sont rigoureusement définis les voisinages en chacun de leurs points, les suites de points et de sous-ensembles convergentes, ainsi que les applications continues entre ces deux types espaces. Les concepts majeurs sont ceux de séparation, de dénombrabilité, de compacité, et de connexité.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France - À Andrée-Aimée Toucas pour son support bibliographique. - Au Professeur Johan Debayle pour son intérêt scientifique.
INTRODUCTION
La topologie générale est présentée en une série de six articles : les deux premiers [AF97] [AF98] portant sur les espaces topologiques, les deux suivants [AF120] [AF121] sur les espaces métriques, et les deux derniers [AF122] [AF123] détaillant près de 150 exemples d’espaces topologiques/métriques possédant ou non les différentes notions topologiques/métriques présentées dans les articles susmentionnés.
MOTS-CLÉS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Applications entre espaces topologiques I
Le support d’une fonction f définie sur un espace topologique et à valeurs réelles est le sous-ensemble suivant (p. 170 de ) :
C’est le sous-ensemble complémentaire du noyau ZE (f) de f (p. 61 de ). Souvent c’est la fermeture du support qui est effectivement considérée comme support (p. 61 de , p. 120 de ).
5.1 Applications...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Applications entre espaces topologiques I