Présentation

Article

1 - ESPACES NORMÉS DE DIMENSION FINIE

2 - ESPACES DE HILBERT

  • 2.1 - Les bases
  • 2.2 - Les opérateurs sur l’espace de Hilbert
  • 2.3 - Opérateurs normaux compacts. Applications aux séries de Fourier

3 - ESPACES DE BANACH NON EUCLIDIENS

  • 3.1 - L’espace dual
  • 3.2 - Applications du lemme de Baire
  • 3.3 - Théorèmes de point fixe
  • 3.4 - Algèbres de Banach

Article de référence | Réf : AF100 v1

Espaces normés de dimension finie
Analyse fonctionnelle - Partie 1

Auteur(s) : Gilles GODEFROY

Relu et validé le 19 nov. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Gilles GODEFROY : Directeur de recherches au Centre national de la recherche scientifique (CNRS)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les notions présentées dans cet exposé, première partie d’un ensemble traitant de l’analyse fonctionnelle, concernent plus particulièrement :

  • les espaces normés de dimension finie ; ce sont ceux pour lesquels un calcul effectif, utilisant les coordonnées (en nombre fini !) des vecteurs est possible. Du point de vue de l’analyse fonctionnelle, ils sont caractérisés par le fait qu’ils contiennent des ensembles compacts d’intérieur non vide : dimension finie et compacité sont donc intimement liées ;

  • les espaces de Hilbert ; en particulier, l’espace de Hilbert séparable est le paradis des analystes. Il constitue un cadre naturel où se conjuguent des idées géométriques (orthogonalité, théorème de Pythagore…), algébriques (valeurs propres, théorie spectrale…) et analytiques (séries et transformation de Fourier) ;

  • les espaces de Banach non euclidiens ; par exemple, l’espace des fonctions continues ou celui des fonctions intégrables sur un segment ne sont pas des espaces de Hilbert. Il nous faut pourtant les considérer si nous voulons montrer l’existence de solutions d’équations différentielles, ou développer le calcul des probabilités.

C’est donc dans la seconde partie ([AF 101]) que nous aborderons :

  • les espaces fonctionnels non normables ;

  • la transformation de Fourier ;

  • le calcul des probabilités.

Les connaissances exigées pour aborder cette présentation de l’analyse fonctionnelle nécessitent d’être à l’aise avec les bases de la topologie. Ces bases sont présentées dans l’article [AF 99] « Topologie et mesure » de ce traité .

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af100


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Espaces normés de dimension finie

Soit N 1 et N 2 deux normes sur le même espace vectoriel E. Nous disons que N 1 et N 2 sont équivalentes s’il existe α > 0 et β > 0 tels que :

αN1(x)N2(x)βN1(x)

pour tout xE .

Il est facile de vérifier qu’on définit ainsi une relation d’équivalence sur l’ensemble des normes sur E.

Le cas de la dimension finie donne lieu à un théorème d’unicité de la structure d’espace normé.

Théorème 1

Soit E=n (ou n ) un espace vectoriel de dimension finie. Toutes les normes sur E sont équivalentes.

Preuve. ¨ On pose K= (ou ). On considère la norme .1 ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Espaces normés de dimension finie
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

SUR LE MÊME SUJET