Présentation
En anglaisAuteur(s)
-
Bernard RANDÉ : Ancien élève de l’École normale supérieure de Saint-Cloud - Docteur en mathématiques - Agrégé de mathématiques - Professeur de mathématiques spéciales au lycée Saint-Louis
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les polynômes sont, d’une part, un outil privilégié de l’algèbre, d’autre part, un moyen commode et puissant d’investigation en analyse. Dans les deux cas, les racines des polynômes en une indéterminée jouent un rôle fondamental, soit dans le cadre arithmético-algébrique des extensions de corps, soit dans les nombreux problèmes numériques liés à l’approximation par des polynômes : interpolation, résolution d’équations numériques, par exemple. Bien entendu, de nombreux autres domaines sont concernés : recherche des valeurs propres d’une matrice et, partant, étude des systèmes dynamiques discrets ou continus, linéaires ou non ; arithmétique traditionnelle, géométrie complexe, géométrie algébrique réelle en sont des spécimens.
L’objet de cet article est de donner quelques outils assez généraux liés à la localisation, la séparation ou l’estimation des racines de polynômes, essentiellement à coefficients réels ou complexes. Seules les méthodes spécifiques aux polynômes seront étudiées, celles qui s’appliquent dans des situations plus générales faisant l’objet d’un autre article.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Résultant
Dans tout ce paragraphe, K désigne un corps.
1.1 Matrice de Sylvester
Soient et deux polynômes, éléments respectivement de Kn[X ] et Km[X ].
Considérons l’application linéaire, qui dépend de P, Q, n et m et qui va de dans , définie par :
ϕ (U, V ) = UP + VQ.Pour écrire la matrice de ϕ, on peut rapporter l’espace d’arrivée à sa base canonique . Quant à l’espace de départ, il admet aussi une base canonique, « produit » des bases canoniques de et de :
(1, 0), (X, 0), ..., (X m –1, 0), (0, 1), (0, X ), ..., (0, X n–1).La matrice de ϕ s’écrit alors :
Définition 1. La matrice précédente est appelée matrice de Sylvester de P et Q (pour les entiers n et m).
On trouve d’autres conventions : souvent, la matrice de Sylvester est la transposée de la précédente....
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Résultant
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive