Présentation
EnglishRÉSUMÉ
On s'intéresse à une somme le plus souvent à cause de son comportement au voisinage d'un point particulier, à distance finie ou infinie. Pour cela, il faut disposer de méthodes d'évaluation asymptotique, qui font l'objet de cet article. Après une présentation du langage de la comparaison asymptotique, cet article aborde quelques méthodes assez générales, illustrées par des exemples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Bernard RANDÉ : Ancien élève de l’École normale supérieure de Saint-Cloud - Docteur en mathématiques - Agrégé de mathématiques - Professeur de mathématiques spéciales au lycée Louis-le-Grand
INTRODUCTION
Lorsque l’on a affaire à une somme, qu’elle soit finie ou infinie, qu’elle dépende de la borne ou d’un paramètre, il est fréquent que l’on ne s’y intéresse que du point de vue de son comportement au voisinage d’un point particulier, à distance finie ou infinie. Cela suppose de disposer de méthodes d’évaluation asymptotique. Nous introduirons d’abord le langage de la comparaison asymptotique, d’ailleurs omniprésent en analyse. Nous étudierons ensuite quelques méthodes assez générales, qui seront illustrées par des exemples. Souvent, les procédés conduisent à des calculs plutôt compliqués, que les logiciels de calcul formel ne sont pas toujours capables d’effectuer à l’heure actuelle.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Méthodes générales
2.1 Opérations de sommation des relations de comparaison
Nous savons qu’étudier une suite revient à étudier la série de ses différences et, de même, étudier une fonction (de classe ) revient à étudier l’intégrale de sa dérivée. Nous nous concentrerons dans un premier temps sur la sommation (ou l’intégration) des relations de comparaison. Formellement, il suffit de traiter le second problème, puisqu’une somme discrète n’est rien d’autre que l’intégrale d’une fonction continue par morceaux. Bien entendu, dans la pratique, on traite directement la somme discrète.
HAUT DE PAGE
Proposition 9 (Intégration des relations de comparaison)
Soit f et g des applications localement intégrables sur l’intervalle , respectivement à valeurs dans E et dans . On suppose en outre que g est positive au voisinage de a.
(1) Cas de l’intégrale partielle. On suppose que g n’est pas intégrable sur . Alors :
(i) si ...?xml>
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Méthodes générales