Présentation
En anglaisRÉSUMÉ
Cet article décrit l'effet de la pression sur les solides. Pour les solides, les valeurs des pressions appliquées qui peuvent atteindre, en statique, plusieurs térapascals. À ce niveau, l’environnement électronique des atomes est perturbé et les propriétés de la matière modifiées, ce qui a permis de mettre en évidence des phénomènes tels que le point critique solide-solide, la dissociation moléculaire et de nouvelles formes de transitions de phases.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Pierre PETITET : Directeur de recherche (CNRS) Laboratoire d’ingénierie des matériaux et des hautes pressions Institut Galilée, université Paris XIII
INTRODUCTION
L’action de la pression sur les fluides modifie la portée des mouvements internes et entraîne ainsi des phénomènes de réorganisation allant jusqu’à la notion de transition de phase liquide-liquide cf. Action de la pression sur les édifices moléculaires fluides. L’effet de la pression sur les solides est une extension de ce qui a été décrit pour les fluides. La principale différence vient des valeurs des pressions appliquées qui peuvent atteindre, en statique, plusieurs térapascals. À ce niveau, l’environnement électronique des atomes est perturbé et les propriétés de la matière modifiées. Cela a permis de mettre en évidence des phénomènes insoupçonnés, malmenant des concepts bien établis, tels que la notion de point critique solide-solide, la dissociation moléculaire et, surtout, un très large éventail de nouvelles formes de transitions de phases. Ce dernier point ouvre des perspectives à la fois sur une meilleure compréhension de l’intérieur des objets célestes et sur l’émergence de nouveaux matériaux fonctionnels. Depuis vingt ans, un important développement dans le domaine a été permis grâce à la technologie des enclumes de diamant (DAC comme Diamond Anvil Cell) ainsi qu’aux expériences d’onde de choc. Il est cependant important de faire remarquer au lecteur que les expériences réalisées à de telles pressions se font dans des volumes extrêmement petits (< 10 −3 mm3) avec des gradients de pression (et de température dans les expériences pression-température) élevés. Ces réserves ne jettent aucun doute sur les phénomènes parfaitement reproductibles observés, mais ne permettent pas de conclure avec certitude sur les étapes physico-chimiques suivies entre l’état initial et l’état final observé. C’est pourquoi la communauté scientifique s’intéresse actuellement à la fois à la conception de dispositifs permettant de réaliser des expériences sur de « gros » volumes (> 1 mm3) et à une plus grande utilisation des techniques de choc.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Transition liquide-solide sous pression
1.1 Équation de Simon
Une première étape est de savoir comment évolue sous pression élevée la transition liquide-solide. À l’exception de quelques substances bien connues (eau, quelques sels, bismuth, antimoine...), la température de fusion d’un solide augmente avec la pression. La relation empirique :
avec :
- Pm et Tm :
- pression et température de fusion
- a, b et c :
- constantes ajustables,
a été proposée par Simon pour représenter la courbe de fusion. Historiquement, en évaluant la constante c au point triple Tt (et à pression Pt négligeable), Simon a exprimé cette équation sous la forme :
valable pour des substances à bas point de fusion pour lesquelles b » 2 (He, H2, Ne, N2...).
Elle a été généralisée pour des substances à plus haut point de fusion en remplaçant Tt par T0, m la température de fusion à la pression ordinaire . Dans ce cas b » 4. Pour réduire la courbe à un seul paramètre, on utilise désormais la pente à l’origine de la courbe donnée par l’équation de Clapeyron :
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transition liquide-solide sous pression
BIBLIOGRAPHIE
-
(1) - SIMON (F.), GLATZEL (G.) - * - Z. anorg. U. allgem. Chem., 178, p. 309 (1929).
-
(2) - GILVARRY (J.J.) - Équation de fusion - . Phys. Rev. vol. 102, no 2, p. 325-331, 19 réf., 2 fig., 2 tabl. (1956).
-
(3) - GILVARRY (J.J.) - * - Phys. Rev., 102, p. 317-324 (1956).
-
(4) - KECHIN (V.V.) - Thermodynamically based melting-curve equation - . J. Phys. Condens. Matter, 7, p. 531-535, 24 réf., 2 fig. (1995).
-
(5) - GREER (A.L.) - Too hot to melt - . Nature, 104, p. 134-5, 2 fig., bibl. (12 réf.) (9 mars 2000).
-
(6) - JOHARI (G.P.) - The Tammann phase boundary, exothermic disordering and the entropy contribution change on phase transformation - . Phys. Chem. Chem. Phys., 3, p. 2483-7, 2 fig., bibl. (30 réf.) (2001).
- ...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive