Présentation
En anglaisAuteur(s)
-
Jean-Pierre BROSSARD : Professeur de Mécanique à l’Institut National des Sciences Appliquées (INSA) de Lyon
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La mécanique analytique, dont le corps central est constitué par les équations de Lagrange, est un outil qui couvre le même champ d’application que les théorèmes généraux. Il s’agit de trouver le mouvement causé par une action mécanique ou, problème réciproque, de trouver les actions mécaniques, le mouvement étant connu. Il y a formellement une grande différence ; la formulation de la mécanique analytique est essentiellement scalaire alors qu’elle est vectorielle pour les théorèmes généraux. La cinétique se fait à partir de l’énergie cinétique et les actions mécaniques s’expriment à travers la puissance virtuelle. Par ailleurs, la mise en équations se fait de manière automatique alors que, par les théorèmes généraux, il faut sélectionner à la fois les systèmes auxquels on les applique et les théorèmes les mieux adaptés pour éviter une série d’équations inutiles. Avec Lagrange ou Hamilton le système considéré est toujours le système global.
Alors pourquoi avoir deux outils pour résoudre un même problème ? Le choix se fait sur un critère simple : l’économie de pensée. Tel problème reçoit une formulation remarquablement simple par Lagrange. Pour tel autre, les théorèmes généraux permettent un contrôle direct et donc une vérification pas à pas de la mise en équation, alors que les équations de Lagrange apparaissent comme une boîte noire avec entrée-sortie et qu’il faut faire en quelque sorte aveuglément confiance aux calculs. Par ailleurs, on a des formes remarquables de mise en équation lorsque les actions mécaniques peuvent être représentées par des fonctions connues a priori (fonction potentiel, fonction dissipation).
Les équations d’Hamilton déduites des équations de Lagrange ont l’intérêt de fournir directement le système canonique (équations différentielles du premier ordre) et permettent une écriture très unifiée des problèmes d’optimisation.
Les équations de Lagrange et d’Hamilton, dont l’usage déborde celui de la mécanique de l’ingénieur, font partie des connaissances de base.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Forme variationnelle. Principe d’Hamilton
Supposons que la configuration puisse s’exprimer à l’aide de n paramètres. Dans l’espace de configuration, le mouvement est représentable par un point P, qui décrit une trajectoire. Supposons que le système est pourvu d’un lagrangien L = T – V. Les équations de Lagrange s’écrivent :
Soit l’intégrale appelée action hamiltonienne. Les équations de Lagrange expriment, d’après les formules d’Euler, que l’intégrale S prise le long d’une partie déterminée sur la trajectoire réelle dans l’espace de configuration est extrémale lorsqu’on la compare à celles prises sur des courbes très voisines dont les extrémités coïncident dans le temps et dans l’espace avec A et B (figure 19). Sous cette forme, c’est un théorème, mais on peut prendre comme principe que S est un extrémum et en déduire les équations de Lagrange.
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Forme variationnelle. Principe d’Hamilton
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive