Présentation
EnglishRÉSUMÉ
Les biomathématiques rassemblent les techniques de modélisation mathématique et de simulation de phénomènes dynamiques observés dans la nature, déclinées dans le domaine du vivant. Ces techniques de modélisation peuvent se décomposer en deux grandes familles, les biomathématiques discrètes et les biomathématiques continues, qui ont en commun le domaine récemment exploré des systèmes hybrides. Cet article privilégie dans sa présentation les techniques de la modélisation des systèmes vivants. La mise au point d’outils facilitant la formalisation de la dynamique à tous les niveaux de complexité du système vivant étudié, du gène à la population d’individus, en passant par la cellule et l’organisme, s’impose à l’avenir. Exemple est pris avec les mécanismes immunitaires innés et acquis chez les mammifères, en vue de corriger notamment des déficits de type paralysie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jacques DEMONGEOT : Directeur adjoint du laboratoire AGIM, Informatique médicale, biomathématiques et modélisation de la cognition - Faculté de Médecine, Université Joseph Fourier (Grenoble)
INTRODUCTION
Les biomathématiques rassemblent les techniques de modélisation mathématique et de simulation de phénomènes dynamiques observés dans la nature, déclinées dans le domaine du vivant. Ces techniques de modélisation peuvent se décomposer en deux grandes familles :
-
les biomathématiques discrètes, que nous illustrerons par la théorie des automates cellulaires (déterministes ou aléatoires) et ses applications à la modélisation des réseaux de régulation génétique et à celle des maladies contagieuses ;
-
les biomathématiques continues, illustrées par la théorie des équations aux dérivées partielles appliquées au développement embryologique et à la modélisation de la diffusion des maladies infectieuses.
Ces deux familles de techniques de modélisation ont en commun un domaine assez récemment exploré, celui des systèmes hybrides, ayant une partie discrète et une partie continue.
Malgré la disparité apparente des domaines d’application, le spectre des sciences du vivant étant très large, la constance dans le choix d’outils classiques, à travers les articles récents dans les journaux internationaux de référence du domaine, conduit à penser que l’originalité des biomathématiques réside davantage dans la complexité des systèmes auxquelles elles s’appliquent, à la limite des possibilités de calcul en termes de dimension des systèmes étudiés et de nombre d’interactions entre leurs composants (ce qui oblige à implémenter des méthodes de calcul optimisant les temps d’exécution), que dans la création de nouveaux outils théoriques. L’introduction de méthodes multi-échelles en temps et en espace, de systèmes hybrides et d’approches énergétiques de type décomposition de Hodge (potentielle-hamiltonienne) constitue une tentative innovante dans la recherche de méthodologies spécifiques, sans représenter en soi une rupture du paradigme de la modélisation classique, qui introduirait des méthodes mathématiques totalement nouvelles, exigées par les spécificités du vivant. Une telle évolution n’est toutefois pas exclue dans l’avenir et nous en tracerons quelques perspectives.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Biomédical - Pharma > Technologies pour la santé > Santé numérique et connectée > Biomathématiques, du discret au continu, au service de la modélisation du vivant > Perspectives
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Perspectives
Les outils des biomathématiques présentés précédemment évoluent et les recherches en cours s’articulent autour de trois types de systèmes modèles :
-
les systèmes hybrides, avec une partie discrète gérant l’évolution des paramètres d’une partie continue, ces paramètres étant en général des variables d’état de bas niveau de complexité (par exemple, des variables de l’infrastructure génétique et protéique), et gérant la dynamique des variables d’état de la partie continue, de haut niveau de complexité (par exemple, des variables physiologiques ou populationnelles), dans le cadre de systèmes complexes multi-niveaux organisationnels ;
-
les systèmes multi-temporo-spatiaux, ayant plusieurs échelles de temps (correspondant à des variables lentes et rapides) et d’espace (correspondant à des fluctuations ou à des déplacements micro-, méso- ou macroscopiques des éléments du système étudié) ;
-
les systèmes décomposables, dont la dynamique contient une partie dissipative, diminuant une fonctionnelle des variables d’état de type énergie potentielle (généralisant l’approche classique des fonctions de Liapounov) et une partie conservative, préservant une fonctionnelle hamiltonienne des variables d’état.
De nouveaux paradigmes, qui définissent et caractérisent les comportements dynamiques des systèmes cumulant ces 3 aspects (hybride multiniveaux organisationnels, multi-temporo-spatial et décomposable), permettent de dégager de nouvelles notions de grandeurs observables, mesurables ou repérables, jouant le même rôle que les grandeurs thermodynamiques de la physique, comme l’entropie évolutionnaire . Nous prendrons, pour illustrer cette tendance, trois exemples :
1) Un...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Perspectives
BIBLIOGRAPHIE
-
(1) - MARCELPOIL (R.), USSON (Y.) - Methods for the study of cellular sociology : Voronoï diagrams and parametrization of the spatial relationships - J. Theor. Biol. 154, 359-369 (1992).
-
(2) - TRACQUI (P.), CRUYWAGEN (G.C.), WOODWARD (D.E.), BARTOO (G.T.), MURRAY (J.D.), ALVORD Jr (E.C.) - A mathematical model of glioma growth : effect of chemotherapy - Cell Prolif. 28, 17-31 (1995).
-
(3) - FOREST (L.), DEMONGEOT (J.) - A general formalism for tissue morphogenesis based on cellular dynamics and control system interactions - ActaBiotheoretica 56, 51-74 (2008).
-
(4) - DEMONGEOT (J.) - Random automata and random fields - In : Cellular Automata : Theory and Applications (réédité sous le titre Dynamical Systems and Cellular Automata), Academic Press, New York, 99-110 (1985).
-
(5) - ROBERT (F.) - Discrete Iterations - A Metric Study, Springer, Berlin (1986).
-
...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive