Présentation
EnglishAuteur(s)
-
Jean-Pierre RIBA : Professeur à l’Institut National Polytechnique de Toulouse (INPT) - École Nationale Supérieure d’Ingénieurs de Génie Chimique (ENSIGC)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les procédés de préparation de plusieurs produits alimentaires de grande consommation comportent au moins une étape mettant en jeu des micro-organismes ou des enzymes :
-
lorsque cette étape fait appel à des micro-organismes qui se développent en consommant une partie d’un réactif appelé substrat et en transformant l’autre en divers produits, le réacteur employé est un fermenteur ;
-
si cette étape est une réaction biochimique catalysée par des enzymes transformant un substrat en produit, elle est réalisée dans un réacteur enzymatique.
Il est courant de faire une distinction entre fermenteurs et réacteurs enzymatiques, car les premiers mettent en jeu de la matière vivante et doivent souvent fonctionner en conditions stériles.
Les technologies de construction de ces deux types de réacteurs sont donc différentes ; en effet, les fermenteurs nécessitent l’emploi de matériaux résistant à la stérilisation par la chaleur et doivent être absolument étanches.
Cette distinction technologique masque, cependant, la similitude des phénomènes mis en jeu dans les réacteurs enzymatiques et les fermenteurs.
L’objectif de cet article est de présenter, d’un point de vue général, les différents types de fermenteurs et de réacteurs enzymatiques, leurs principes de conception et leurs modes d’utilisation.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Agroalimentaire
(260 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Hydrodynamique et performances de transfert
2.1 Cuves mécaniquement agitées
2.1.1 Cuves et mobiles d’agitation
On trouve, dans la pratique industrielle, de nombreuses formes de cuves et de mobiles d’agitation.
Depuis 1950, une configuration standard de cuve ayant le mérite d’assurer une bonne homogénéité de la phase liquide est recommandée (figure 1). Le rôle des chicanes est d’éviter la formation d’un vortex autour de l’axe du mobile d’agitation.
Les mobiles d’agitation, dont le seul rôle est de mélanger la phase liquide, peuvent être classés en deux catégories : les mobiles cisaillants et les mobiles non cisaillants.
Nous considérerons ici le mobile le plus représentatif de chaque catégorie :
-
la turbine à six pales plates, dite turbine Rushton ( cisaillant ) ; le mouvement généré par cette turbine est radial, puis axial lorsque le liquide rencontre la paroi de la cuve, le cisaillement créé par la turbine accroît la turbulence et donc le mélange du liquide ;
-
l’hélice marine ( non cisaillant ) ; elle génère un mouvement axial du liquide.
2.1.2 Régimes hydrodynamiques. Puissance consommée
-
Le mouvement d’un liquide newtonien dans une cuve agitée est caractérisé par le nombre de Reynolds qui représente le rapport entre les forces d’inertie et de viscosité :
Cet article fait partie de l’offre
Agroalimentaire
(260 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Hydrodynamique et performances de transfert
BIBLIOGRAPHIE
-
(1) - VAN’T RIET (K.) - Mass Transfer in Fermentation. - Trends in biotechnology 1, 4, 113, 1983.
-
(2) - AKITA (K.), YOSHIDA (F.) - Gas Holdup and Volumetric Mass Transfer in Bubble Columns. - Ind. Eng. Chem. Des. Dev. 12, 76, 1973.
-
(3) - SCHUMPE (A.), DECKWER (W.D.) - Viscous Media in Tower Bioreactors : Hydro-dynamic Characteristics and Mass Transfer Properties. - Bioprocess Eng. 2, 79, 1987.
-
(4) - CHUNG (S.F.), WEN (C.Y.) - Longitudinal Dispersion of Liquid Flowing Through Fixed and Fluidized Beds. - AIChE Journal 14, 6, 857, 1968.
-
(5) - DWIVEDI (P.N.), UPADHYAY (S.N.) - Particle-Fluide Mass Transfer in Fixed and Fluidized Beds. - Ind. Eng. Chem. Des. Dev. 16, 2, 157, 1977.
-
(6) - HAN (K.), LEVENSPIEL (O.) - Extended Monod Kinetics for Substrate, Product and Cell Inhibition. - Biotechnol. Bioeng. 32, 430, 1988.
- ...
ANNEXES
MASSÉ (A.) - Contribution à la mise en place d'un réacteur enzymatique à membrane travaillant en milieu supercritique. - Université des sciences et techniques du Languedoc (2001)
D'ALVISE (N.) - Mise au point d'un procédé d'hydrolyse de protéines de luzerne (Medicago Sativa Var. Europe) dans un réacteur enzymatique à membrane à l'échelle pilote. - Lille 1 (2000)
HAUT DE PAGE
Liste non exhaustive
HAUT DE PAGE2.1 Liste non exhaustive de constructeurs de bioréacteurs
Pierre Guérin : http://www.pierreguerin.fr
LSL Biolafitte S.A. : rachetée par Pierre Guérin : http://www.pierreguerin.fr
Goavec Engineering S.A. : http://www.goavec.com
Société Nouvelle de Constructions Soudées du Coteau SNCSC
HAUT DE PAGECet article fait partie de l’offre
Agroalimentaire
(260 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive