Présentation

Article

1 - ACQUISITION DES MESURES

2 - TRAITEMENT DES DONNÉES

3 - APPLICATIONS

4 - CONCLUSION

5 - GLOSSAIRE

Article de référence | Réf : J6637 v1

Acquisition des mesures
Analyse des gaz rares par spectrométrie de masse statique - Mesures et applications

Auteur(s) : Laurent ZIMMERMANN, David BEKAERT

Date de publication : 10 déc. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article présente les modes d'acquisition des signaux des gaz rares en mono- et multi-collection en s'appuyant sur les configurations des spectromètres de masse de dernière génération. Un traitement des données brutes, associé à des corrections d'interférences isobariques, est expliqué pour être en mesure de calculer la concentration et la composition isotopique d'un gaz rare dans un échantillon. Plusieurs applications s'appuyant sur la mesure des compositions élémentaires et isotopiques des gaz rares sont données à titre d'exemples.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Noble gases analysis by static mass spectrometry .Measurements and applications

This article presents the modes of acquisition of noble gas signals in mono- and multi-collection based on the configurations of the latest generation of mass spectrometers. A treatment of the raw data, associated with isobaric interference corrections, is explained to enable calculating a noble gas concentration and isotopic composition in a sample. Several applications based on the measurement of elemental and isotopic compositions of noble gases are given as examples.

Auteur(s)

  • Laurent ZIMMERMANN : Ingénieur d'études - CNRS - Centre de Recherches Pétrographiques et Géochimiques, Vandœuvre lès Nancy, France

  • David BEKAERT : Post-doctorant - Marine Chemistry and Geochemistry Department - Woods Hole Oceanographic Institution - Woods Hole, MA, 02543, États-Unis

INTRODUCTION

Les gaz rares sont des éléments extrêmement volatils concentrés essentiellement dans les réservoirs de surface de la Terre, et particulièrement dans l'atmosphère. Leurs compositions élémentaires et/ou isotopiques, qui ne peuvent pas être affectées par des réactions chimiques ou biologiques, dépendent ainsi de (i) leur composition initiale/héritée (autrement dit, la source), (ii) de contributions secondaires issues de réactions nucléaires (radioactivité, fission, réactions de spallation), et/ou (iii) de fractionnements dépendants de la masse liés à des processus physiques tels que la diffusion, l'évaporation ou la condensation. La géochimie des gaz rares est principalement utilisée comme un outil de datation et de traçage afin de mettre en lumière des processus géologiques autrement impossibles à distinguer. Elle permet par exemple, de bien comprendre les processus physiques lors d’éruptions volcaniques ou encore l’origine de certains fluides, roches ou minéraux. La composition isotopique des gaz rares, bien caractérisée et quantifiée, que ce soit dans l'atmosphère, la croûte terrestre, les sédiments ou le manteau, permet de bien comprendre l’évolution d'un objet géologique au cours du temps et de mettre en évidence des phénomènes de mélanges entre plusieurs réservoirs. Ils apportent enfin des informations sur l'origine et l'évolution des éléments volatils majeurs, tels que l'eau, le carbone, l'azote, dont le traçage est difficile du fait de leur participation à des réactions chimiques et biologiques lors de processus géologiques. Déterminer quand, et sous quelle(s) forme(s) les éléments volatils ont été mis à disposition à la surface de la Terre est crucial pour mieux comprendre :

  • l'évolution de l'atmosphère ;

  • la provenance et le devenir de l'eau sur Terre ;

  • la mise en place de conditions favorables au développement de la vie.

Avant d'être exploité, ce puissant outil de recherche nécessite toutefois, de maîtriser la totalité de la chaîne analytique, à savoir :

  • l'extraction des gaz rares sous ultravide (UHV) pour s'affranchir de toute contamination atmosphérique [J 6 632] ;

  • la purification et la séparation des gaz rares les uns des autres dans des enceintes UHV développées spécifiquement pour répondre aux projets de recherches [J 6 634] [J 6 635] ;

  • l'analyse par spectrométrie de masse statique de la composition élémentaire et isotopique des gaz rares [J 6 636] ;

  • le traitement des données brutes abordé dans cet article.

Cet article, qui vient donc en complément des quatre articles précédemment cités, décrit les modes d'acquisition des signaux en mono- et multicollection et de leurs interpolations. Une méthode est proposée pour calculer une concentration à partir de la sensibilité du spectromètre de masse. L'influence des interférences isobariques est aussi exposée, accompagnée des méthodes de correction ayant été développées pour s'en affranchir. Une méthode de propagation d'erreurs, indispensable à toute exploitation scientifique de résultats analytiques est présentée. Enfin, une liste d'applications, non exhaustive, a été rapportée pour donner aux lecteurs une idée du vaste champ d'applications accessibles à la géochimie des gaz rares.

Un glossaire en fin d'article fournit les principales définitions nécessaires à une bonne compréhension de l'article.

Comme il est d'usage dans la profession, les rapports des symboles chimiques cités dans cet article sont, sauf indication contraire, atomiques, soit en nombre d'atomes pour un échantillon donné.

Principaux sigles

UHV : Ultra High Vacuum (ultravide)

FC : Faraday Cup (cage de Faraday)

CDD : Compact Discrete Dynode (multiplicateur d'électrons à dynodes discrètes)

CFM : Combined Faraday/ion counting CDD Multiplier (détecteur muni à la fois d'une cage de Faraday et d'un multiplicateur d'électrons CDD)

MRP : Mass Resolving Power (puissance de résolution de masse)

MORB : Mid Ocean Ridge Basalt (basalte des dorsales médio-océaniques)

OBI : Oceanic Island Basalt (basalte des îles volcaniques)

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

dynamic mass spectrometry   |   monocollection   |   multicollection   |   isobaric interference   |   isotopic measurements

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j6637


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Acquisition des mesures

1.1 Mode d'acquisition

La réalisation d'une mesure consiste à collecter un faisceau d'ions à l'aide d'un collecteur adapté, une cage de Faraday (FC) ou un multiplicateur d'électrons (CDD) [J 6 636] de manière à transformer ce flux ionique en un flux électrique mesurable à l'aide par exemple d'un ampèremètre de haute précision. L'acquisition peut se faire soit en mode dynamique, soit en mode statique. Un groupe de pompage turbomoléculaire [BM 4 272] est utilisé (mode dynamique), ou non (mode statique), en permanence pour entretenir le vide dans l'enceinte de l'analyseur au cours d'une analyse. L'acquisition peut enfin se faire en mono- ou multi-collection où la mesure des isotopes est respectivement séquentielle ou simultanée.

HAUT DE PAGE

1.1.1 Mode statique

Ce mode statique d'acquisition consiste à introduire dans un analyseur un gaz purifié pour mesurer, sous un vide statique, sa composition élémentaire et/ou isotopique.

Le principal avantage de ce mode d'analyse est de pouvoir abaisser la limite de détection de la méthode à quelques milliers d'atomes. Il est toutefois confronté à des problèmes de dégazage et de consommation ionique qui, aboutissant à des fractionnements isotopiques au cours de l'analyse, doivent être estimés et corrigés.

Le niveau de précision de ce mode d'acquisition est de l'ordre du pour mille. Il est certes moins précis que le mode dynamique (concentration minimale > 1 µmol, pompage dynamique...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Acquisition des mesures
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MARK (D.F.), BARFOD (D.), STUART (F.M.), IMLACH (J.) -   The ARGUS multicollector noble gas mass spectrometer : Performance for 40Ar/39Ar geochronology.  -  Geochemistry Geophysics Geosystems, 10, p. 1-9 (2009).

  • (2) - BAJO (K.), SUMINO (H.), TOYODA (M.), OKAZAKI (R.), OSAWA (T.), ISHIHARA (M.), KATAKUSE (I.), NOTSU (K.), IGARASHI (G.), NAGAO (K.) -   Construction of a newly designed small-size mass spectrometer for helium isotope analysis : Toward the continuous monitoring of 3He/4He ratios in natural fluids.  -  Mass spectrometry, 1, p. 1-10 (2012).

  • (3) - SAXTON (J.M.) -   The 21Ne/20Ne ratio of atmospheric neon.  -  Journal of Analytical Atomic Spectrometry, 35, p. 943-952 (2020).

  • (4) - MABRY (J.), BURNARD (P.), BLARD (P.H.), ZIMMERMANN (L.) -   Mapping changes in helium sensitivity and peak shape for varying parameters of a Nier-type noble gas ion source.  -  Journal of Analytical Atomic Spectrometry, 27, p. 1012-1017 (2012).

  • (5) - SANO (Y.), WAKITA (H.), WAKINO (K.), MURATA (M.), YAMAMOTO (H.), MATSUDA (H.) -   Helium...

1 Événements – Conférences

DINGUE (Development In Noble Gas Understanding and Expertise)

Goldsmith

AGU (American Geophysical Union)

EGU (European Geosciences Union)

The Meteoritical Society

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Thermo Fisher Scientific

https://www.thermoscientific.com

Hanna-Kunath-Straße 11

28199 Bremen

Allemagne

Cameca

https://www.cameca.com

29 Quai des Grésillons

92622 GENNEVILLIERS Cedex

France

Isotopx Limited

https://www.isotopx.com

Millbrook court

Midpoint 18

Middlewich

Cheshire

CW10 0GE

United Kingdom

Hamamatsu Photonics France

https://www.hamamatsu.com

19, rue du saule trapu

Parc du moulin de Massy

91300 MASSY

France

ETP...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS