Présentation
En anglaisRÉSUMÉ
Cet article propose un état de l’art de la fluidisation des particules fines et nanoparticules. Les différentes forces interparticulaires et leurs conséquences sur la fluidisation sont dans un premier temps introduites. Les phénomènes d’agglomération ainsi que la structure et la taille des agglomérats obtenus sont ensuite présentés. L’accent est également mis sur les différentes technologies disponibles pour améliorer la fluidisation de ce type de poudres. Cet article se conclut par la présentation de plusieurs applications industrielles potentielles concernant la fluidisation de particules fines et nanoparticules.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article reviews the fluidization of fine particles and nanoparticles. The different interparticle forces and their effects on fluidization are first introduced. Agglomeration phenomena and the structure and size of agglomerates are then described. A summary of various assisting methods and their impacts for improving fluidization quality is also presented. The article concludes with a brief review of potential applications of fluidization in the handling and processing of fine particles and nanoparticles.
Auteur(s)
-
Mikel LETURIA : Maître de conférences Université de Technologie de Compiègne – Département génie des procédés industriels – Labo. TIMR EA4297, France
-
Khashayar SALEH : Professeur des universités Université de Technologie de Compiègne – Département génie des procédés industriels – Labo. TIMR EA4297, France
INTRODUCTION
La fluidisation est un procédé de mise en contact d’une phase granulaire et d’une phase fluide qui permet de maintenir les particules en suspension. Le terme « fluidisation » vient du fait que la suspension gaz-solide est amenée à un état semblable à celui d’un liquide. L’avantage majeur de la fluidisation réside dans la qualité de la mise en contact intime entre la phase fluide et les particules solides. L’intensité des transferts de matière et de chaleur (aussi bien entre phases, qu’entre le lit et les surfaces immergées) se traduit par des températures et des concentrations uniformes au sein du lit fluidisé.
Cependant, toutes les poudres n’ont pas la même aptitude à être fluidisées et en conséquence, elles peuvent se comporter différemment vis-à-vis de la fluidisation. En fonction du diamètre moyen et de la masse volumique des particules, la classification de Geldart donne le type de fluidisation qui sera obtenu avec de l’air dans les conditions ambiantes. Il se dégage ainsi quatre groupes de particules caractérisés par un régime de fluidisation différent. Ces quatre groupes sont décrits dans les articles [J 4 100] et [J 1 065]. Le présent article s’intéresse plus particulièrement à la fluidisation des poudres appartenant au groupe C de Geldart (particules fines et cohésives) et aux nanoparticules.
La fluidisation des poudres fines (groupe C) et des nanoparticules rencontre actuellement un nombre croissant d’applications dans diverses industries (semi-conducteurs, catalyseurs, pharmaceutiques, cosmétiques, produits alimentaires, plastiques, métallurgie des poudres, etc.). De façon générale, ces poudres sont caractérisées par leur faible diamètre et leur grande surface spécifique mais aussi par des forces de cohésion interparticulaires élevées. L’influence de ces forces d’interaction sur la fluidisation est encore mal cernée et l’état actuel des connaissances est tel qu’il reste difficile de prédire le comportement global d’une poudre à partir des caractéristiques individuelles des particules qui la constituent. Il est à noter que le terme « nanoparticules » est généralement utilisé pour désigner des particules primaires de taille inférieure à 100 nm (plus précisément, des matériaux granulaires ayant au moins une dimension inférieure à 100 nm). Le groupe C correspond à des particules de taille inférieure à un diamètre compris entre 20 et 80 μm en fonction de leur densité (frontière entre les groupes A et C de la classification de Geldart).
Selon la classification de Geldart, les poudres du groupe C ne sont pas fluidisables en raison de forces interparticulaires très élevées. Or, l’analyse de la littérature montre que la fluidisation des poudres fines et nanoparticules est parfois possible sous forme d’agglomérats (ou « clusters »). En effet, l’agglomération des particules primaires en structures de taille plus importante permet de déplacer favorablement le rapport entre les forces interparticulaires et hydrodynamiques. Ces phénomènes d’agglomération font ainsi apparaître de nouveaux régimes parfois qualifiés de « fluidisation par agglomération ». Néanmoins, la fluidisation de ce type de poudres peut poser plusieurs problèmes : entraînement et élutriation de particules, détérioration des transferts de matière et de chaleur, défluidisation, etc. Pour améliorer la qualité de fluidisation de celles-ci (homogénéité de la couche fluidisée, fluidisation à faibles vitesses de gaz, diminution de la taille des agglomérats, etc.), différentes technologies peuvent être mises en œuvre : agitation mécanique, vibration, fluidisation sous champ centrifuge, utilisation de microjets, ajout d’agents d’écoulement, etc.
MOTS-CLÉS
KEYWORDS
interparticle forces | agglomeration
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Forces interparticulaires
1.1 Mise en évidence des forces interparticulaires
Par définition, l’état de fluidisation est atteint lorsque la force de traînée exercée par le gaz compense la force de pesanteur. Ainsi, il est facile d’imaginer qu’un lit fluidisé aura un comportement différent si des forces de cohésion s’ajoutent entre les particules.
Historiquement, de nombreuses recherches ont été menées pour caractériser la fluidisation des particules de classe A. Selon Geldart et al. , les poudres de ce groupe se caractérisent par des forces interparticulaires inférieures aux forces hydrodynamiques présentes dans le lit fluidisé. En revanche, la fluidisation des particules de classe C a jusqu’à présent fait l’objet d’un nombre moins important de publications. Les poudres de ce groupe sont caractérisées par des forces de cohésion supérieures aux forces hydrodynamiques . Ces forces interparticulaires empêchent le gaz d’individualiser les particules et entraînent bien souvent des phénomènes indésirables de pistonnage et de renardage (figure 1) . Ainsi, le comportement d’une poudre en lit fluidisé est étroitement lié au rapport entre les forces interparticulaires et les forces hydrodynamiques ...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Forces interparticulaires
BIBLIOGRAPHIE
-
(1) - GELDART (D.), HARNBY (N.), WONG (A.C.) - Fluidization of cohesive powders. - Powder Technology, 37, p. 25-37 (1984).
-
(2) - MOLERUS (O.) - Interpretation of Geldart’s type A, B, C and D powders by taking into account interparticle cohesion forces. - Powder Technology, 33, p. 81-87 (1982).
-
(3) - RHODES (M.) - Introduction to particle technology. - 2nd Ed., Wiley, Chichester (2008).
-
(4) - YANG (W.-C.) - Fluidization of fine cohesive powders and nanoparticles. - A review. J. Chin. Inst. Chem. Eng., 36, p. 1-15 (2005).
-
(5) - VISSER (J.) - Van der Waals and other cohesive forces affecting powder fluidization. - Powder Technology, 58, p. 1-10 (1989).
-
(6) - XU (C.C.), ZHU (J.) - Prediction of the minimum fluidization velocity for fine particles of various degrees of cohesiveness. - ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Ergun Fluidization Software http://www.utc.fr/ergun/
HAUT DE PAGE
Module UNIT (cours à distance à accès libre) : « Sciences et Technologies des Poudres » et modèle fluidisation http://nte.enstimac.fr/STP/co/STP_web.html http://nte.enstimac.fr/STP/co/OU8.html
HAUT DE PAGE
Fluidization XV, 22-26 mai 2016, Fairmont Le Chateau Montebello, Québec, Canada
World Congress of Particle Technology VIII, 22-26 avril 2018, Orlando, Florida, États-Unis
9e Colloque Science et Technologie des Poudres (STP), 2018, Compiègne,...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive