Présentation

Article

1 - FORCES INTERPARTICULAIRES

2 - TYPES DE COMPORTEMENT EN FLUIDISATION

3 - PHÉNOMÈNE D’AGGLOMÉRATION ET SOUS-CLASSES DU GROUPE C

4 - STRUCTURE ET TAILLE DES AGGLOMÉRATS

5 - RÉCAPITULATIF ET CRITÈRES DE DISCRIMINATION ENTRE LES COMPORTEMENTS APF ET ABF

6 - TECHNIQUES D’AMÉLIORATION DE LA FLUIDISATION DES POUDRES COHÉSIVES

7 - APPLICATIONS ET PERSPECTIVES INDUSTRIELLES

8 - CONCLUSION

9 - GLOSSAIRE

Article de référence | Réf : J4101 v1

Glossaire
Fluidisation gaz-solide - Particules fines et nanoparticules

Auteur(s) : Mikel LETURIA, Khashayar SALEH

Date de publication : 10 juin 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article propose un état de l’art de la fluidisation des particules fines et nanoparticules. Les différentes forces interparticulaires et leurs conséquences sur la fluidisation sont dans un premier temps introduites. Les phénomènes d’agglomération ainsi que la structure et la taille des agglomérats obtenus sont ensuite présentés. L’accent est également mis sur les différentes technologies disponibles pour améliorer la fluidisation de ce type de poudres. Cet article se conclut par la présentation de plusieurs applications industrielles potentielles concernant la fluidisation de particules fines et nanoparticules.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Gas-Solid Fluidization ;Fine particles and nanoparticles

This article reviews the fluidization of fine particles and nanoparticles. The different interparticle forces and their effects on fluidization are first introduced. Agglomeration phenomena and the structure and size of agglomerates are then described. A summary of various assisting methods and their impacts for improving fluidization quality is also presented. The article concludes with a brief review of potential applications of fluidization in the handling and processing of fine particles and nanoparticles.

Auteur(s)

  • Mikel LETURIA : Maître de conférences Université de Technologie de Compiègne – Département génie des procédés industriels – Labo. TIMR EA4297, France

  • Khashayar SALEH : Professeur des universités Université de Technologie de Compiègne – Département génie des procédés industriels – Labo. TIMR EA4297, France

INTRODUCTION

La fluidisation est un procédé de mise en contact d’une phase granulaire et d’une phase fluide qui permet de maintenir les particules en suspension. Le terme « fluidisation » vient du fait que la suspension gaz-solide est amenée à un état semblable à celui d’un liquide. L’avantage majeur de la fluidisation réside dans la qualité de la mise en contact intime entre la phase fluide et les particules solides. L’intensité des transferts de matière et de chaleur (aussi bien entre phases, qu’entre le lit et les surfaces immergées) se traduit par des températures et des concentrations uniformes au sein du lit fluidisé.

Cependant, toutes les poudres n’ont pas la même aptitude à être fluidisées et en conséquence, elles peuvent se comporter différemment vis-à-vis de la fluidisation. En fonction du diamètre moyen et de la masse volumique des particules, la classification de Geldart donne le type de fluidisation qui sera obtenu avec de l’air dans les conditions ambiantes. Il se dégage ainsi quatre groupes de particules caractérisés par un régime de fluidisation différent. Ces quatre groupes sont décrits dans les articles [J 4 100] et [J 1 065]. Le présent article s’intéresse plus particulièrement à la fluidisation des poudres appartenant au groupe C de Geldart (particules fines et cohésives) et aux nanoparticules.

La fluidisation des poudres fines (groupe C) et des nanoparticules rencontre actuellement un nombre croissant d’applications dans diverses industries (semi-conducteurs, catalyseurs, pharmaceutiques, cosmétiques, produits alimentaires, plastiques, métallurgie des poudres, etc.). De façon générale, ces poudres sont caractérisées par leur faible diamètre et leur grande surface spécifique mais aussi par des forces de cohésion interparticulaires élevées. L’influence de ces forces d’interaction sur la fluidisation est encore mal cernée et l’état actuel des connaissances est tel qu’il reste difficile de prédire le comportement global d’une poudre à partir des caractéristiques individuelles des particules qui la constituent. Il est à noter que le terme « nanoparticules » est généralement utilisé pour désigner des particules primaires de taille inférieure à 100 nm (plus précisément, des matériaux granulaires ayant au moins une dimension inférieure à 100 nm). Le groupe C correspond à des particules de taille inférieure à un diamètre compris entre 20 et 80 μm en fonction de leur densité (frontière entre les groupes A et C de la classification de Geldart).

Selon la classification de Geldart, les poudres du groupe C ne sont pas fluidisables en raison de forces interparticulaires très élevées. Or, l’analyse de la littérature montre que la fluidisation des poudres fines et nanoparticules est parfois possible sous forme d’agglomérats (ou « clusters »). En effet, l’agglomération des particules primaires en structures de taille plus importante permet de déplacer favorablement le rapport entre les forces interparticulaires et hydrodynamiques. Ces phénomènes d’agglomération font ainsi apparaître de nouveaux régimes parfois qualifiés de « fluidisation par agglomération ». Néanmoins, la fluidisation de ce type de poudres peut poser plusieurs problèmes : entraînement et élutriation de particules, détérioration des transferts de matière et de chaleur, défluidisation, etc. Pour améliorer la qualité de fluidisation de celles-ci (homogénéité de la couche fluidisée, fluidisation à faibles vitesses de gaz, diminution de la taille des agglomérats, etc.), différentes technologies peuvent être mises en œuvre : agitation mécanique, vibration, fluidisation sous champ centrifuge, utilisation de microjets, ajout d’agents d’écoulement, etc.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

interparticle forces   |   agglomeration

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j4101


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

9. Glossaire

Agglomération ; agglomeration

Mécanisme menant à la formation d’un agglomérat, qui correspond à un assemblage de particules liées de façon « lâche » par des forces d’attraction telles que les forces de Van der Waals. Les agglomérats peuvent être dispersés et sont dits « éphémères ».

Agrégation ; aggregation

Mécanisme menant à la formation d’un agrégat, qui correspond à un assemblage de particules liées de façon « rigide », souvent par un phénomène de frittage. Les agrégats deviennent des structures de base indivisibles et sont dits « non dispersifs ».

Distributeur ; distributor

Élément perforé ou poreux dont la fonction est de distribuer uniformément le fluide sur toute la section du lit fluidisé. Les bulles se forment au voisinage de ce distributeur, également appelé grille de fluidisation.

Élutriation ; elutriation

Phénomène d’entraînement des particules qui quittent la colonne de fluidisation et doivent être récupérées par des dispositifs annexes tels que les cyclones et les filtres.

Fluidisation ; fluidization

Procédé de mise en contact d’une phase granulaire et d’une phase fluide permettant de maintenir les particules en suspension.

Fluidisation bouillonnante ; bubbling fluidization

Régime de fluidisation caractérisée par la présence de bulles (cavités pratiquement vides de particules). Chaque bulle entraîne dans son sillage une certaine quantité de particules, créant un mouvement et une agitation permanente des grains solides au sein du lit fluidisé.

Fluidisation bouillonnante d’agglomérats ; agglomerate bubbling fluidization (ABF)

Régime de fluidisation, spécifique aux particules fines et nanoparticules, qui se caractérise par la formation d’agglomérats simples denses (SSA), la présence de bulles, une expansion relativement faible et des phénomènes de ségrégation.

Fluidisation particulaire d’agglomérats ; agglomerate particulate fluidization (APF)

Régime de fluidisation, spécifique aux particules fines et nanoparticules, qui se caractérise par la formation d’agglomérats complexes poreux (MSA), l’absence de bulles et une forte expansion.

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GELDART (D.), HARNBY (N.), WONG (A.C.) -   Fluidization of cohesive powders.  -  Powder Technology, 37, p. 25-37 (1984).

  • (2) - MOLERUS (O.) -   Interpretation of Geldart’s type A, B, C and D powders by taking into account interparticle cohesion forces.  -  Powder Technology, 33, p. 81-87 (1982).

  • (3) - RHODES (M.) -   Introduction to particle technology.  -  2nd Ed., Wiley, Chichester (2008).

  • (4) - YANG (W.-C.) -   Fluidization of fine cohesive powders and nanoparticles.  -  A review. J. Chin. Inst. Chem. Eng., 36, p. 1-15 (2005).

  • (5) - VISSER (J.) -   Van der Waals and other cohesive forces affecting powder fluidization.  -  Powder Technology, 58, p. 1-10 (1989).

  • (6) - XU (C.C.), ZHU (J.) -   Prediction of the minimum fluidization velocity for fine particles of various degrees of cohesiveness.  -  ...

1 Outils logiciels

Ergun Fluidization Software http://www.utc.fr/ergun/

HAUT DE PAGE

2 Sites Internet

Module UNIT (cours à distance à accès libre) : « Sciences et Technologies des Poudres » et modèle fluidisation http://nte.enstimac.fr/STP/co/STP_web.html http://nte.enstimac.fr/STP/co/OU8.html

HAUT DE PAGE

3 Événements

Fluidization XV, 22-26 mai 2016, Fairmont Le Chateau Montebello, Québec, Canada

World Congress of Particle Technology VIII, 22-26 avril 2018, Orlando, Florida, États-Unis

9e Colloque Science et Technologie des Poudres (STP), 2018, Compiègne,...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(361 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS