Présentation
En anglaisRÉSUMÉ
Cet article présente les concepts théoriques de base de l’opération unitaire agitation-mélange. Il décrit les opérations d’agitation-mélange mettant en œuvre une ou plusieurs phases au sein d’une cuve d’agitation équipée d’un agitateur et présente tous les paramètres globaux d’un système d’agitation. Les potentialités d’application de la mécanique des fluides numérique permettent d’acquérir des données locales telles que les champs de vitesse et de turbulence. Des exemples de calcul des diverses grandeurs d’un système d’agitation illustrent les divers concepts théoriques et montrent la complexité de l’extrapolation des résultats obtenus sur une unité pilote vers une unité industrielle.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article presents the basic theoretical concepts of the agitation-mixing unit operation. It describes the agitation-mixing operations implementing one or more phases within an agitation tank equiped with an agitator and presents all the global parameters of an agitation system. The application potential of computational fluid dynamics makes it possible to acquire local data such as velocity and turbulence fields. Examples of calculation of the various quantities of a stirring system illustrate the various theoretical concepts and show the complexity of extrapolating results obtained on a pilot unit to an industrial unit.
Auteur(s)
-
Michel ROUSTAN : Ingénieur INSA (Institut national des sciences appliquées de Toulouse) - Professeur émérite de génie des procédés INSA Toulouse - TBI Toulouse Biotechnology Institute Bio & Chemical Engineering, CNRS, INRAe, INSA
-
Alain LINÉ : Ingénieur INP-ENSEEIHT (Institut national polytechnique de Toulouse) - Professeur de mécanique des fluides, département GP3E, INSA Toulouse - TBI Toulouse Biotechnology Institute Bio & Chemical Engineering, CNRS, INRAe, INSA
-
Jean-Claude PHARAMOND : A collaboré à la rédaction de la première version de l’article.
INTRODUCTION
Les techniques d’agitation, qui ont longtemps été considérées comme un art, s’appuient maintenant sur des considérations tant théoriques qu’expérimentales, qui permettent une approche scientifique des problèmes posés. Des progrès énormes ont en effet pu être réalisés grâce, d’une part, à l’accumulation de données sur le fonctionnement d’unités industrielles et, d’autre part, à l’effort de recherche important accompli par quelques sociétés et laboratoires universitaires spécialisés dans le domaine de l’agitation et du mélange.
D’une façon très générale, la détermination d’une unité d’agitation consiste soit à sélectionner l’appareil adapté à un nouveau procédé, soit à extrapoler (ou interpoler) les résultats obtenus avec un appareil donné dans le cadre d’une fabrication existante.
Les potentialités des nouveaux moyens expérimentaux et numériques permettent de développer une approche locale qui complète l’approche globale classique du fonctionnement des cuves agitées.
L’analyse locale du fonctionnement d’une cuve agitée donne accès aux distributions spatiale et temporelle de la vitesse et de la turbulence. Cette information peut aider à comprendre et à contrôler le mélange dans la cuve agitée et peut conduire à optimiser son fonctionnement dans différentes conditions.
Dans tous les cas, une bonne connaissance du procédé est indispensable pour permettre le choix le plus favorable à l’accomplissement de ce procédé, notamment sur le plan économique.
L’objectif de l’article est de fournir à l’utilisateur ou au concepteur les concepts théoriques de base et les outils nécessaires pour dimensionner ou optimiser un système d’agitation devant réaliser une opération de mélange donnée. Le § 1 décrit les opérations d’agitation-mélange mettant en œuvre une ou plusieurs phases au sein d’une cuve d’agitation équipée d’un agitateur. Le § 2 définit ce qu’est un système d’agitation, à savoir le couple cuve-agitateur. Dans le § 3 sont définis tous les paramètres globaux d’un système d’agitation : puissance dissipée, débit de pompage et de circulation, hauteur théorique de l’agitateur, taux de cisaillement, gradient de vitesse. Les potentialités d’application de la mécanique des fluides numérique (§ 4) permettent d’acquérir des données locales telles que les champs de vitesse et de turbulence. Dans le § 5, sont présentés des exemples de calcul des diverses grandeurs d’un système d’agitation. Une démarche pour le choix du matériel d’agitation bien adapté à l’opération à réaliser est présentée dans le § 6. Le § 7 montre la complexité de l’extrapolation de résultats obtenus sur une unité pilote vers une unité industrielle.
KEYWORDS
mixing | Mixing | multiphase reactor | computational fluid dynamics
VERSIONS
- Version archivée 1 de juin 1999 par Michel ROUSTAN, Jean-Claude PHARAMOND, Alain LINE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Extrapolation du pilote à l’échelle industrielle
7.1 Principe de l’extrapolation
Le but de l’extrapolation est de permettre de reproduire à l’échelle industrielle les résultats obtenus à l’échelle pilote ou laboratoire. Il s’agit, à partir de résultats obtenus à l’échelle du 1/10 de m3, de dimensionner un système d’agitation à l’échelle de plusieurs m3, voire d’une centaine de m3.
L’extrapolation est fondée sur le principe de similitude selon lequel les rapports d’un ou plusieurs paramètres sont les mêmes aux deux échelles. Dans le domaine de l’agitation, les paramètres géométriques et opératoires sont nombreux (§ 3). On peut considérer cinq similitudes :
-
similitude géométrique : les rapports des dimensions géométriques sont les mêmes aux deux échelles (exemple : d/D, w/d, etc.) ;
-
similitude dynamique : les rapports des forces sont identiques (exemple : Re = force d’inertie/force de viscosité, Fr = force d’inertie/force de pesanteur, etc.) ;
-
similitude cinématique : les rapports des vitesses en des points homologues sont identiques ;
-
similitude chimique : les concentrations sont les mêmes en des points homologues ;
-
similitude thermique : les températures sont les mêmes en des points homologues.
Le tableau 13 montre l’influence d’un changement d’échelle de facteur F, en conservant la similitude géométrique, sur les grandeurs caractéristiques d’un système d’agitation. Selon la grandeur conservée invariante d’une échelle à l’autre, le principe de similitude n’est pas respecté pour les autres grandeurs caractéristiques.
si...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Extrapolation du pilote à l’échelle industrielle
BIBLIOGRAPHIE
-
(1) - RUSHTON (J.H.), COSTICH (E.W.), EVERETT (H.J.) - Power characteristics of mixing impellers - (Part. 2). Chem. Eng. Progress, 46, no 9, p. 467-476 (1950).
-
(2) - HOLLAND (F.A.), CHAPMAN (F.S.) - Liquid mixing and processing in stirred tanks. - Reinhold Publ. Corp. (1966).
-
(3) - UHL (V.), GRAY (J.) - Mixing : theory and practice. - Academic Press (1967).
-
(4) - NAGATA (S.) - Mixing principles and applications. - John Wiley (1975).
-
(5) - KOLMOGOROV (A. N.) - The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. - Proceedings : Mathematical and Physical Sciences, Vol. 434, no 1890, Turbulence and Stochastic Process : Kolmogorov's Ideas 50 Years On, p. 9-13 (Jul. 8, 1991).
-
(6) - SCHWARTZBERG (H.G.), TREYBAL (R.E.) - Fluid...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive