Présentation

Article

1 - CULTURE DE MICROALGUES ET CYANOBACTÉRIES : INTERACTIONS AVEC LA SOURCE DE CARBONE

2 - TRANSFERT GAZ-LIQUIDE DU CO2, ÉQUILIBRES CHIMIQUES EN PHASE LIQUIDE, BILANS MATIÈRE

  • 2.1 - Équilibres entre phases et équilibres chimiques en solutions
  • 2.2 - Modélisation du transfert gaz-liquide de CO2 et des bilans matière associés

3 - OPTIMISATION DE L’APPORT DE CARBONE EN CULTURE DE MICROALGUES

4 - APPLICATION DE LA BIOFIXATION DE CO2 PAR LES MICROALGUES AUX FUMÉES INDUSTRIELLES

5 - CONCLUSION ET PERSPECTIVES

6 - GLOSSAIRE

Article de référence | Réf : CHV7005 v1

Glossaire
Biofixation du CO2 par microalgues

Auteur(s) : Jérémy PRUVOST, Benjamin LEGOUIC, Jean-François CORNET, Christophe LOMBARD

Relu et validé le 30 mai 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La croissance photosynthétique des microalgues permet de coupler leur culture à une biofixation du CO2 contenu dans des fumées industrielles. Cet article présente les phénomènes et procédés impliqués dans cette mise en œuvre. L’accent est mis sur la physico-chimie de dissolution du CO2, le lien à la croissance et les conséquences pour le couplage entre l’émission de carbone et le procédé de culture. Différentes stratégies sont présentées, ainsi que leurs impacts sur les performances en production de biomasse, biofixation de CO2 et épuration de gaz. L’ensemble est illustré par des exemples d’intégration visant à recycler et valoriser par cette voie biologique le CO2 d’origine industrielle.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jérémy PRUVOST : Professeur à l’université de Nantes - GEPEA – UMR 6144 CNRS/Université de Nantes/IMTA/ONIRIS - École des Mines de Nantes/ENITIAA, Saint-Nazaire, France

  • Benjamin LEGOUIC : Docteur - Ingénieur de recherche à l’université de Nantes - ALGOSOLIS – UMS 3722 CNRS/Université de Nantes, Saint-Nazaire, France

  • Jean-François CORNET : Professeur à SIGMA Clermont - Institut Pascal – UMR CNRS 6602, Aubière, France

  • Christophe LOMBARD : Docteur - Chef de projets et ingénieur de recherche, AlgoSource Technologies, Saint-Nazaire, France

INTRODUCTION

Les micro-organismes photosynthétiques de type microalgues et cyanobactéries tendent à s’imposer dans de nombreux secteurs applicatifs. De par leur croissance photosynthétique rapide en milieu aqueux, ces micro-organismes offrent également la possibilité d’associer à leur croissance la fixation de CO2 d’origine industrielle. Cependant, les micro-organismes photosynthétiques n’ont pas la capacité d’assimiler le carbone sous forme gazeuse (CO2,g). Le CO2,g doit préalablement être transféré dans la phase liquide sous forme de carbone inorganique dissous (CID) pour ensuite être assimilé et ainsi biofixé. Ceci constitue une différence majeure par rapport aux plantes supérieures, et induit de multiples conséquences qui seront décrites dans cet article.

Cela concerne en particulier la physico-chimie de dissolution du CO2,g, étroitement liée au pH et à la physico-chimie du milieu de culture en général. Le transfert gaz-liquide dans le système de culture est également important, la faible dissolution du CO2,g rendant difficile la mise en œuvre d’une épuration importante du CO2,g injecté. Il en résulte un impact important sur la stratégie de mise en œuvre, mais également d’intégration industrielle. Ainsi, la biofixation du carbone, l’abattement de la phase gazeuse et la production de biomasse microalgale sont étroitement liés.

Cet article se propose de présenter les éléments essentiels impliqués dans ce procédé, ainsi que les principales conclusions de mises en œuvre pratiques qui en découlent. Dans une première partie, les principes généraux de la croissance photosynthétique et de son lien au carbone sont présentés. Les mécanismes biologiques d’assimilation et de conversion sont ainsi introduits, montrant la nécessité de maintenir des concentrations en carbone dissous suffisantes dans le milieu de culture pour éviter l’apparition de mécanismes biologiques menant à une perte de performance cinétique. Dans une deuxième partie, les différents éléments théoriques nécessaires à la compréhension et modélisation des phénomènes impliqués dans la physico-chimie de dissolution du carbone, ainsi que le transfert gaz-liquide en réacteur sont présentés. Ces éléments mettent en avant les particularités du CO2, comme le couplage étroit de la chimie du carbone dissous au pH de culture, lui-même ayant un impact sur les réactions biologiques de croissance. Il en ressort un couplage étroit entre différentes grandeurs majeures du procédé biologique. Ceci est illustré dans une troisième partie pour différents cas, amenant à détailler les principales stratégies d’alimentation en carbone utilisées en pratique, avec leurs avantages et inconvénients respectifs selon l’objectif visé, comme optimiser la biofixation, ou l’abattement du CO2 de la phase gazeuse. La dernière partie est finalement consacrée à l’usage industriel de tels procédés. L’impact de composés comme les métaux contenus dans les fumées, ainsi que les contraintes d’intégration aux sites d’émissions, sont discutés, avec leurs conséquences pratiques à la fois sur le procédé (intégration sur le circuit d’émissions, prétraitements des gaz) et la biomasse produite. Une revue de quelques projets menés de par le monde vient clore l’article, montrant l’intérêt croissant des microalgues pour développer des procédés de valorisation du CO2 d’origine industrielle.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-chv7005


Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Glossaire

Productivité en biomasse ; biomass productivity

Caractérise les performances en production d’un système de culture, donnant la biomasse produite sur un temps d’exploitation donné, ramené à l’unité de volume ou de surface éclairée du système de culture. La productivité est le résultat d’un ensemble important de facteurs liés à la microalgue cultivée, à la technologie de culture, et aux conditions et mode opératoire (discontinu, continu ou autre stratégie de récolte). Elle est, dans tous les cas, liée à la vitesse volumétrique de croissance (r x) qui caractérise la cinétique de croissance du micro-organisme dans le système de culture.

Biofixation du carbone ; carbon biofixation (or mitigation)

Grandeur utilisée pour caractériser la fixation biologique du carbone. Cette grandeur est directement liée à la biomasse produite, dans la mesure où les deux sont liées stœchiométriquement par l’équation de croissance (et le contenu en carbone de la biomasse). La biofixation peut exprimer une quantité totale de carbone fixé, éventuellement par unité de temps. Dans ce dernier cas, elle est liée à la productivité en biomasse. Cette grandeur peut aussi être exprimée sous forme normalisée, en la normant par l’apport en carbone dans le système de culture.

Abattement de la phase gazeuse ; gas cleaning

Grandeur utilisée pour représenter la diminution de la teneur en CO2 d’une phase gazeuse, entre l’injection et la sortie du système de culture. Cette grandeur peut être exprimée sous forme normalisée, en la normant par la teneur en CO2 de l’émission.

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Glossaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BERG (J.M.), TYMOCZKO (J.L), STRYER (L.) -   Biochemistry :  -  New York, W H Freeman (2002).

  • (2) - ROUSTAN (M.) -   Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux.  -  Edition TEC & DOC (2003).

  • (3) - PRICE (G.D), HOWITT (S.M.) -   The cyanobacterial bicarbonate transporter BicA : its physiological role and the implications of structural similarities with human SLC26 transporters.  -  Special Issue entitled CSBMCB 53rd Annual Meeting – Membrane Proteins in Health and Disease. Biochemistry and Cell Biology. 89(2):178-188 (2011).

  • (4) - BADGER (M.R), PRICE (G.D) -   CO2 concentrating mechanisms in cyanobacteria : molecular components, their diversity and evolution.  -  Journal of Experimental Botany. 54(383):609-622 (2003).

  • (5) - SPALDING (M.H.) -   Microalgal carbon-dioxide-concentrating mechanisms : Chlamydomonas inorganic carbon transporters.  -  Journal of Experimental Botany. 59(7):1463-1473 (2008).

  • ...

1 Sites Internet

Cyanotech Corporation : http://www.cyanotech.com/

Earthrise Nutritonal : http://www.earthrise.com/

Décision du 3 mai 2000 sur la définition des « métaux lourds » : http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2000D0532:20020101:FR:PDF

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS