Présentation
En anglaisRÉSUMÉ
Cet article décrit les différents procédés industriels d'obtention des émulsions, depuis les techniques d'agitation mécanique et hautes pressions - techniques nécessitant un apport énergétique élevé - jusqu'aux techniques à membranes et par inversion de phases, peu gourmandes en énergie. Il constitue une aide à la décision pour le choix d'une technique. En effet, pour une même formulation, plusieurs technologies sont possibles, avec des paramètres opératoires et des caractéristiques différents qui peuvent conduire à des émulsions de différentes morphologies H/E, E/H ou multiples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article describes different industrial processes for obtaining emulsions, from mechanical agitation and high-pressure homogenizers (high energy processes) to phase inversion and membrane techniques (low energy processes). It should help decision making for the choice of a relevant technique. Indeed, for the same formulation, several technologies are available, with different operating parameters and characteristics, which may lead to various emulsion types: O/W, W/O or multiple ones.
Auteur(s)
-
Martine POUX : Ingénieur de recherche, HDR - Laboratoire de Génie chimique INPT/UPS/CNRS, - École nationale supérieure des ingénieurs en arts chimiques et technologiques, Toulouse (INP-ENSIACET), France
-
Jean-Paul CANSELIER : Ingénieur ENSCT, docteur-ingénieur, docteur d’État, Pompertuzat, France
INTRODUCTION
Dans de nombreuses industries (agroalimentaire, pharmaceutique, cosmétique, mais aussi chimique), beaucoup de produits fabriqués – que ce soit des intermédiaires ou des produits finis – se présentent sous la forme d’émulsion. La mise en contact de phases non miscibles pour obtenir un produit pseudo-homogène stable requiert un certain nombre de connaissances technologiques et du savoir-faire. Le changement d’échelle en vue d’une production en grande quantité, basé sur les résultats issus de la phase de développement, s’avère souvent difficile : en effet, les phénomènes impliqués dans la formation des émulsions sont nombreux et complexes et liés au type de technologie utilisée, de sorte que, pour une formulation et des conditions opératoires données, il n’existe pas de solution unique permettant d’obtenir une émulsion stable.
Cet article, qui fait suite à celui sur les mécanismes de formation des émulsions publié dans la même collection [J 2 152], a pour but de guider le choix de l’utilisateur en décrivant, en expliquant et en comparant les principaux procédés industriels de préparation des émulsions : techniques classiques d’agitation mécanique (hélices, turbines, rotors-stators), mélangeurs coaxiaux, mélangeurs statiques, moulins colloïdaux, techniques haute pression, ultrasons, techniques à membranes, microfluidique, inversion de phases… Dans chacun des cas, à titre comparatif, la technologie, les paramètres opératoires, les propriétés des émulsions générées et les domaines d’utilisation sont précisés. Il s’agit donc ici d’offrir à l’utilisateur les éléments indispensables à la production d’émulsions en vue d’une aide à la décision.
Le lecteur pourra aussi consulter les articles [J 2 150] et [J 2 158] ainsi que la référence .
KEYWORDS
high pressure | emulsion | homogenizer | rotor-stator | colloid mill
VERSIONS
- Version archivée 1 de juin 2004 par Martine POUX, Jean-Paul CANSELIER
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Procédé ultrasonore
6.1 Principe et mécanisme
-
Émission ultrasonore
Les ultrasons de puissance sont des ondes sonores dont les fréquences sont comprises entre 16 kHz (limite supérieure de l’audibilité humaine) et 1 MHz. Ils sont en général émis par une surface plane vibrant de façon sinusoïdale autour de sa position d’équilibre, à la fréquence f et avec une amplitude A (de l’ordre du µm).
-
Propagation de l’onde
L’onde se propage en milieu solide, liquide ou gazeux avec une célérité c, qui dépend des propriétés physiques du milieu, et une longueur d’onde λ(λ = c/f). En milieu liquide, on suppose que l’onde est plane et longitudinale. La pression acoustique P A ou surpression par rapport à la pression d’équilibre et l’intensité transportée par l’onde I (puissance par unité de surface) peuvent s’écrire en fonction des caractéristiques de la source et du milieu :
avec :
- PA :
- pression acoustique (Pa),
- I :
- puissance par unité de surface (kg.s−3),
- Z :
- impédance acoustique (kg.m−2.s−1),
- A :
- amplitude (m),
- f :
- fréquence (Hz ou s−1).
L’impédance acoustique Z du milieu traversé a des valeurs très différentes suivant le milieu de propagation : 410 kg.m−2.s−1 dans l’air, 1,5.106 kg.m−2.s−1 dans l’eau et 1,5.107 kg.m−2.s−1 dans le verre.
À l’interface entre deux milieux d’impédances acoustiques très différentes, l’onde se réfléchit et conduit à une onde...
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Procédé ultrasonore
BIBLIOGRAPHIE
-
(1) - SJÖBLOM (J.) (éd.) - Encyclopedic handbook of emulsion technology. - Marcel Dekker, New York (2001).
-
(2) - ZHOU (G.), KRESTA (S.M.) - Correlation of mean drop size and minimum drop size with the turbulence energy dissipation and the flow in an agitated tank. - Chem. Eng. Sci., 53, n° 11, p. 2063-2079 (1998).
-
(3) - VERMEULEN (T.), WILLIAMS (G.M.), LANGLOIS (G.E.) - Interfacial area in liquid-liquid and gas-liquid agitation. - Chem. Eng. Progr., 51, p. 85F-95F (1955).
-
(4) - CALDERBANK (P.H.) - Physical rate processes in industrial fermentations, part I : the interfacial area in gas-liquid contacting with mechanical agitation. - Trans. I Chem. E., 36, p. 443-463 (1958).
-
(5) - SPROW (F.B.) - Distribution of drop sizes produced in turbulent liquid-liquid dispersion. - Chem. Eng. Sci., 22, p. 435-442 (1967).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
(liste non exhaustive)
REACH :
https://www.ecologie.gouv.fr/reglementation-reach
HAUT DE PAGE2.1 Fournisseurs d’appareils d’émulsification
Technologie d’agitation mécanique, moulins colloïdaux :
Ekato
FrymaKomura
Inoxpa
Ika
Pierre Guérin
Silverson
VMI-Rayneri
Ystral Sarl
Technologie...
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive