Présentation
EnglishRÉSUMÉ
Cet article décrit les différents procédés industriels d'obtention des émulsions, depuis les techniques d'agitation mécanique et hautes pressions - techniques nécessitant un apport énergétique élevé - jusqu'aux techniques à membranes et par inversion de phases, peu gourmandes en énergie. Il constitue une aide à la décision pour le choix d'une technique. En effet, pour une même formulation, plusieurs technologies sont possibles, avec des paramètres opératoires et des caractéristiques différents qui peuvent conduire à des émulsions de différentes morphologies H/E, E/H ou multiples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Martine POUX : Ingénieur de recherche, HDR - Laboratoire de Génie chimique INPT/UPS/CNRS, - École nationale supérieure des ingénieurs en arts chimiques et technologiques, Toulouse (INP-ENSIACET), France
-
Jean-Paul CANSELIER : Ingénieur ENSCT, docteur-ingénieur, docteur d’État, Pompertuzat, France
INTRODUCTION
Dans de nombreuses industries (agroalimentaire, pharmaceutique, cosmétique, mais aussi chimique), beaucoup de produits fabriqués – que ce soit des intermédiaires ou des produits finis – se présentent sous la forme d’émulsion. La mise en contact de phases non miscibles pour obtenir un produit pseudo-homogène stable requiert un certain nombre de connaissances technologiques et du savoir-faire. Le changement d’échelle en vue d’une production en grande quantité, basé sur les résultats issus de la phase de développement, s’avère souvent difficile : en effet, les phénomènes impliqués dans la formation des émulsions sont nombreux et complexes et liés au type de technologie utilisée, de sorte que, pour une formulation et des conditions opératoires données, il n’existe pas de solution unique permettant d’obtenir une émulsion stable.
Cet article, qui fait suite à celui sur les mécanismes de formation des émulsions publié dans la même collection [J 2 152], a pour but de guider le choix de l’utilisateur en décrivant, en expliquant et en comparant les principaux procédés industriels de préparation des émulsions : techniques classiques d’agitation mécanique (hélices, turbines, rotors-stators), mélangeurs coaxiaux, mélangeurs statiques, moulins colloïdaux, techniques haute pression, ultrasons, techniques à membranes, microfluidique, inversion de phases… Dans chacun des cas, à titre comparatif, la technologie, les paramètres opératoires, les propriétés des émulsions générées et les domaines d’utilisation sont précisés. Il s’agit donc ici d’offrir à l’utilisateur les éléments indispensables à la production d’émulsions en vue d’une aide à la décision.
Le lecteur pourra aussi consulter les articles [J 2 150] et [J 2 158] ainsi que la référence .
VERSIONS
- Version archivée 1 de juin 2004 par Martine POUX, Jean-Paul CANSELIER
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
12. Annexe : préparation d’émulsions d’huile de silicone
Si la formulation d’une émulsion de silicone est fonction des propriétés applicatives recherchées, que nous ne développerons pas ici, la technologie utilisée pour l’émulsification industrielle des silicones dépend pour sa part des paramètres critiques suivants :
-
le diagramme de phases du tensioactif utilisé (solubilité dans l’eau et éventuellement dans l’huile de silicone, en fonction de la température, aptitude à l’inversion de phases, aptitude à former avec l’eau des phases organisées…), ses propriétés interfaciales et sa vitesse de diffusion aux interfaces (capacité ou non à cicatriser rapidement les nouvelles surfaces créées par fragmentation mécanique) ; par exemple, dans le cas d’un tensioactif non ionique à bas point de trouble, il faudra proscrire des procédés conduisant par auto-échauffement à des températures trop élevées ;
-
la viscosité de la phase silicone à émulsifier ;
-
les quantités à produire ;
-
et, évidemment, les outils industriels déjà disponibles : en effet, on n’a pas souvent la possibilité de développer un nouveau procédé adapté à une nouvelle formulation…
Les deux modes opératoires suivants, donnés à titre d’exemples, décrivent des formulations et des méthodes très simples de mise en émulsion de résines ou d’huiles de silicone, qui ont été facilement extrapolées à l’échelle industrielle. Ces formulations sont principalement utilisées dans des applications de lubrification et de démoulage industriels, et d’hydrofugation dans le domaine du bâtiment. Les autres applications classiques des émulsions de silicones sont : l’adoucissement des textiles (émulsions d’huiles de silicones aminées), la cosmétique (additifs pour shampooing…), le démoussage des préparations pharmaceutiques, des lessives et de certains procédés industriels, ainsi que la formulation de peintures hydrofuges et de mastics aqueux élastiques et faciles à utiliser.
12.1 Exemple 1
La résine siliconée est du type DT(OR), c’est-à-dire est constituée de motifs de structure —SiMe2—O— (motif D) et de motifs C3H7—SiO3/2 (motif T),...
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Annexe : préparation d’émulsions d’huile de silicone
BIBLIOGRAPHIE
-
(1) - SJÖBLOM (J.) (éd.) - Encyclopedic handbook of emulsion technology. - Marcel Dekker, New York (2001).
-
(2) - ZHOU (G.), KRESTA (S.M.) - Correlation of mean drop size and minimum drop size with the turbulence energy dissipation and the flow in an agitated tank. - Chem. Eng. Sci., 53, n° 11, p. 2063-2079 (1998).
-
(3) - VERMEULEN (T.), WILLIAMS (G.M.), LANGLOIS (G.E.) - Interfacial area in liquid-liquid and gas-liquid agitation. - Chem. Eng. Progr., 51, p. 85F-95F (1955).
-
(4) - CALDERBANK (P.H.) - Physical rate processes in industrial fermentations, part I : the interfacial area in gas-liquid contacting with mechanical agitation. - Trans. I Chem. E., 36, p. 443-463 (1958).
-
(5) - SPROW (F.B.) - Distribution of drop sizes produced in turbulent liquid-liquid dispersion. - Chem. Eng. Sci., 22, p. 435-442 (1967).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
(liste non exhaustive)
REACH :
https://www.ecologie.gouv.fr/reglementation-reach
HAUT DE PAGE2.1 Fournisseurs d’appareils d’émulsification
Technologie d’agitation mécanique, moulins colloïdaux :
Ekato
FrymaKomura
Inoxpa
Ika
Pierre Guérin
Silverson
VMI-Rayneri
Ystral Sarl
Technologie...
Cet article fait partie de l’offre
Formulation
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive