Présentation
EnglishRÉSUMÉ
La croissance photosynthétique des microalgues permet de coupler leur culture à une biofixation du CO2 contenu dans des fumées industrielles. Cet article présente les phénomènes et procédés impliqués dans cette mise en œuvre. L’accent est mis sur la physico-chimie de dissolution du CO2, le lien à la croissance et les conséquences pour le couplage entre l’émission de carbone et le procédé de culture. Différentes stratégies sont présentées, ainsi que leurs impacts sur les performances en production de biomasse, biofixation de CO2 et épuration de gaz. L’ensemble est illustré par des exemples d’intégration visant à recycler et valoriser par cette voie biologique le CO2 d’origine industrielle.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jérémy PRUVOST : Professeur à l’université de Nantes - GEPEA – UMR 6144 CNRS/Université de Nantes/IMTA/ONIRIS - École des Mines de Nantes/ENITIAA, Saint-Nazaire, France
-
Benjamin LEGOUIC : Docteur - Ingénieur de recherche à l’université de Nantes - ALGOSOLIS – UMS 3722 CNRS/Université de Nantes, Saint-Nazaire, France
-
Jean-François CORNET : Professeur à SIGMA Clermont - Institut Pascal – UMR CNRS 6602, Aubière, France
-
Christophe LOMBARD : Docteur - Chef de projets et ingénieur de recherche, AlgoSource Technologies, Saint-Nazaire, France
INTRODUCTION
Les micro-organismes photosynthétiques de type microalgues et cyanobactéries tendent à s’imposer dans de nombreux secteurs applicatifs. De par leur croissance photosynthétique rapide en milieu aqueux, ces micro-organismes offrent également la possibilité d’associer à leur croissance la fixation de CO2 d’origine industrielle. Cependant, les micro-organismes photosynthétiques n’ont pas la capacité d’assimiler le carbone sous forme gazeuse (CO2,g). Le CO2,g doit préalablement être transféré dans la phase liquide sous forme de carbone inorganique dissous (CID) pour ensuite être assimilé et ainsi biofixé. Ceci constitue une différence majeure par rapport aux plantes supérieures, et induit de multiples conséquences qui seront décrites dans cet article.
Cela concerne en particulier la physico-chimie de dissolution du CO2,g, étroitement liée au pH et à la physico-chimie du milieu de culture en général. Le transfert gaz-liquide dans le système de culture est également important, la faible dissolution du CO2,g rendant difficile la mise en œuvre d’une épuration importante du CO2,g injecté. Il en résulte un impact important sur la stratégie de mise en œuvre, mais également d’intégration industrielle. Ainsi, la biofixation du carbone, l’abattement de la phase gazeuse et la production de biomasse microalgale sont étroitement liés.
Cet article se propose de présenter les éléments essentiels impliqués dans ce procédé, ainsi que les principales conclusions de mises en œuvre pratiques qui en découlent. Dans une première partie, les principes généraux de la croissance photosynthétique et de son lien au carbone sont présentés. Les mécanismes biologiques d’assimilation et de conversion sont ainsi introduits, montrant la nécessité de maintenir des concentrations en carbone dissous suffisantes dans le milieu de culture pour éviter l’apparition de mécanismes biologiques menant à une perte de performance cinétique. Dans une deuxième partie, les différents éléments théoriques nécessaires à la compréhension et modélisation des phénomènes impliqués dans la physico-chimie de dissolution du carbone, ainsi que le transfert gaz-liquide en réacteur sont présentés. Ces éléments mettent en avant les particularités du CO2, comme le couplage étroit de la chimie du carbone dissous au pH de culture, lui-même ayant un impact sur les réactions biologiques de croissance. Il en ressort un couplage étroit entre différentes grandeurs majeures du procédé biologique. Ceci est illustré dans une troisième partie pour différents cas, amenant à détailler les principales stratégies d’alimentation en carbone utilisées en pratique, avec leurs avantages et inconvénients respectifs selon l’objectif visé, comme optimiser la biofixation, ou l’abattement du CO2 de la phase gazeuse. La dernière partie est finalement consacrée à l’usage industriel de tels procédés. L’impact de composés comme les métaux contenus dans les fumées, ainsi que les contraintes d’intégration aux sites d’émissions, sont discutés, avec leurs conséquences pratiques à la fois sur le procédé (intégration sur le circuit d’émissions, prétraitements des gaz) et la biomasse produite. Une revue de quelques projets menés de par le monde vient clore l’article, montrant l’intérêt croissant des microalgues pour développer des procédés de valorisation du CO2 d’origine industrielle.
MOTS-CLÉS
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Chimie verte > Gestion durable des déchets et des polluants > Biofixation du CO2 par microalgues > Application de la biofixation de CO2 par les microalgues aux fumées industrielles
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Ressources marines et biotechnologies bleues > Biofixation du CO2 par microalgues > Application de la biofixation de CO2 par les microalgues aux fumées industrielles
Accueil > Ressources documentaires > Innovation > Éco-conception et innovation responsable > Conception durable inspirée du vivant : le biomimétisme > Biofixation du CO2 par microalgues > Application de la biofixation de CO2 par les microalgues aux fumées industrielles
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Application de la biofixation de CO2 par les microalgues aux fumées industrielles
4.1 Contexte général
4.1.1 Problématique environnemental
Les émissions anthropiques de CO2 vers l’atmosphère, notamment celles d’origine industrielles, concourent fortement au réchauffement climatique observé depuis des décennies en modifiant l’effet de serre naturel de notre atmosphère. L’une des voies envisagées afin de contribuer à la réduction de ces émissions [G1814] consiste en un recyclage du CO2 ainsi émis. Les procédés de recyclage (ou de valorisation) du CO2, qui font de celui-ci une nouvelle ressource, incluent des procédés :
-
d’utilisation directe du CO2 sans modification chimique de la molécule (par exemple, en tant que solvant pour des opérations de récupération assistée de pétrole et de gaz, comme fluide pour machines frigorifiques, comme gazéifiant pour les industries agroalimentaires, etc. [G1816]) ;
-
de transformation de la molécule CO2 par voie chimique (carbonatation de roches minérales naturelles ou artificielles pour faire de nouveaux matériaux de construction, réduction catalytique ou non du CO2 pour produire du méthane, du méthanol, des acides carboxyliques, etc. ...
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Application de la biofixation de CO2 par les microalgues aux fumées industrielles
BIBLIOGRAPHIE
-
(1) - BERG (J.M.), TYMOCZKO (J.L), STRYER (L.) - Biochemistry : - New York, W H Freeman (2002).
-
(2) - ROUSTAN (M.) - Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux. - Edition TEC & DOC (2003).
-
(3) - PRICE (G.D), HOWITT (S.M.) - The cyanobacterial bicarbonate transporter BicA : its physiological role and the implications of structural similarities with human SLC26 transporters. - Special Issue entitled CSBMCB 53rd Annual Meeting – Membrane Proteins in Health and Disease. Biochemistry and Cell Biology. 89(2):178-188 (2011).
-
(4) - BADGER (M.R), PRICE (G.D) - CO2 concentrating mechanisms in cyanobacteria : molecular components, their diversity and evolution. - Journal of Experimental Botany. 54(383):609-622 (2003).
-
(5) - SPALDING (M.H.) - Microalgal carbon-dioxide-concentrating mechanisms : Chlamydomonas inorganic carbon transporters. - Journal of Experimental Botany. 59(7):1463-1473 (2008).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cyanotech Corporation : http://www.cyanotech.com/
Earthrise Nutritonal : http://www.earthrise.com/
Décision du 3 mai 2000 sur la définition des « métaux lourds » : http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2000D0532:20020101:FR:PDF
HAUT DE PAGECet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive