Présentation
EnglishRÉSUMÉ
La microscopie de fluorescence nécessite d'une part un instrument spécifique et des molécules fluorescentes. Cet article expose ces deux aspects. Cette technique est majoritairement utilisée sur des échantillons biologiques. Les nombreuses sondes pour les molécules biologiques ainsi que les protéines de fusion fluorescentes comme la GFP sont présentées, ainsi qu'une large gamme de techniques : champ large, confocal, super résolution, coupes optiques, protection des échantillons, vidéo microscopie sur matériel vivant. Un tissu industriel dynamique s'est développé autour de grandes entreprises d'instrumentation, des constructeurs des périphériques (caméras, optomécanique, chimie) et des laboratoires de recherche biomédicale, d'optique, et des compagnies pharmaceutiques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Léon ESPINOSA : Docteur ès sciences - Ingénieur de recherche CNRS - Responsable du service de microscopie et de criblage du LCB (Laboratoire de Chimie Bactérienne) UMR CNRS 7283 Aix Marseille Université
-
Yves TOURNEUR : Ingénieur École Centrale de Lyon - Docteur ès sciences, chargé de recherche CNRS, laboratoire INSERM U1060 - Responsable de la plateforme Centre de quantimétrie, Université Claude Bernard Lyon 1
INTRODUCTION
Cet article décrit les principales techniques de la microscopie de fluorescence, les dispositifs commerciaux existants, et les technologies en développement. Le principal domaine d'utilisation de la microscopie de fluorescence est le domaine biomédical dans les applications de recherche fondamentale, appliquée, de diagnostic, de contrôle de qualité, etc. D'autres applications, en particulier en chimie et sciences des matériaux, utilisent les mêmes principes décrits ici du point de vue des applications des sciences de la vie. Actuellement, la microscopie de fluorescence permet d'étudier au niveau cellulaire et moléculaire les structures biologiques, leur fonctionnement et leurs interactions (division cellulaire, motilité, transport, sécrétion, communication neuronale, etc.).
La microscopie de fluorescence explore les domaines depuis l'ordre du nanomètre, avec les nouvelles techniques de super-résolution, jusqu'aux tailles millimétriques et, dans le domaine spectral, de l'ultraviolet (350 nm) au proche infrarouge (1 μm). Avec les capteurs courants, les temps d'enregistrement vont de la milliseconde à quelques secondes.
D'un point de vue industriel, le développement du secteur dépend d'une interaction dynamique entre les laboratoires de recherche fondamentale (utilisateurs), les laboratoires académiques de recherche en instrumentation, et les constructeurs. La microscopie de fluorescence se situe au carrefour de plusieurs techniques en évolution rapide. Des évolutions apparaissent dans les domaines de la chimie des sondes, des sources de lumière, des lasers, des dispositifs optomécaniques, des détecteurs de lumière, du traitement de signal et des possibilités de l'informatique. Des développements locaux peuvent se retrouver en un ou deux ans sous la forme d'un nouveau produit commercial. L'interaction avec tous ces domaines permet à la microscopie de fluorescence de s'étendre à de nouveaux champs, depuis l'étude moléculaire jusqu'à l'animal vivant. Nous avons choisi l'approche pluridisciplinaire dans la présentation de cet article.
Cette technique est assez universelle, généralement rapide à mettre en œuvre. Un de ses intérêts majeurs est l'extrême spécificité offerte par l'immuno- fluorescence et les protéines de fusion. Elle trouve ses limites dans la difficulté de disposer d'une sonde spécifique et d'explorer des objets épais (> 0,5 mm).
Elle s'applique maintenant en routine dans le domaine du diagnostic médical, de la recherche biomédicale et pharmaceutique, en chirurgie, et dans la recherche en instrumentation.
MOTS-CLÉS
molécules fluorescentes microscope à fluorescence super-résolution Recherche biomédicale industrie biomédical Microscopie de fluorescence à deux photons microscopie optique fluorescence
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Mesures mécaniques et dimensionnelles > Métrologie par imagerie et microscopie > Microscopie de fluorescence biomédicale > Capteurs d'image
Accueil > Ressources documentaires > Mesures - Analyses > Techniques d'analyse > Analyse des macromolécules biologiques > Microscopie de fluorescence biomédicale > Capteurs d'image
Accueil > Ressources documentaires > Biomédical - Pharma > Technologies pour la santé > Imagerie médicale – Thérapies par ondes > Microscopie de fluorescence biomédicale > Capteurs d'image
Cet article fait partie de l’offre
Bioprocédés et bioproductions
(161 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Capteurs d'image
En fluorescence, le niveau de lumière est faible, l'efficacité et le bruit parasite des capteurs vont jouer un rôle significatif dans l'image finale. Selon la technologie utilisée, l'image sera acquise point par point, ligne par ligne, ou, le plus souvent, par remplissage direct d'un capteur matriciel de type caméra CCD.
Les capteurs sont caractérisés par l'efficacité quantique et par leur niveau de bruit. L'efficacité est mesurée en % d'électrons par photon. Elle dépend de la longueur d'onde et peut approcher 95 %.
Le bruit thermique est un phénomène stochastique de production d'électrons en l'absence de source lumineuse. Ce bruit est grossièrement doublé tous les 8 oC. Les capteurs seront refroidis, soit à une température légèrement supérieure à 0 oC ; soit plus bas, jusqu'à – 90 oC, en prenant en compte le risque de givre et de condensation (soufflerie d'air sec, par exemple).
Sur les caméras, le bruit de lecture est l'incertitude au moment de la mesure. Il est mesuré en nombre d'électrons, entre 0,7 et 50 selon la technologie.
Les informations qui suivent sont très succinctes, on se reportera au document sur l'Imagerie à bas niveau de lumière [E 6 570] pour plus d'informations. Les technologies initialement réservées à l'astronomie sont maintenant principalement développées pour les applications biologiques.
5.1 Détecteurs matriciels
Tous les modèles de microscopes modernes ont un chemin optique alternatif aux oculaires appelé « sortie vidéo » qui permet de placer un capteur sur le plan image.
Les supports argentiques ont été remplacés par des capteurs électroniques, de type CCD (Charge Coupled Device ) ou CMOS (Complementary Metal Oxide Semiconductor ).
Dans les deux technologies, le capteur est divisé en éléments (picture elements ou pixels) arrangés en tableau. Chaque élément est composé d'un détecteur CMOS comprenant une fine couche soumise à un champ électrique...
Cet article fait partie de l’offre
Bioprocédés et bioproductions
(161 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Capteurs d'image
BIBLIOGRAPHIE
-
(1) - MOJZISOVA (H.), BONNEAU (S.), BRAULT (D.) - Structural and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells. - Eur. Biophys. J., vol. 36, no 8, p. 943-953, nov. 2007.
-
(2) - VALEUR (B.) - Molecular fluorescence : principles and applications. - Wiley-VCH, Verlag GmbH, vol. 8 (2001).
-
(3) - HOLZINGER (M.), LE GOFF (A.), COSNIER (S.) - Nanomaterials for biosensing applications : a review. - Front. Chem., vol. 2, p. 1-10, août 2014.
-
(4) - GIEPMANS (B.N.G.), ADAMS (S.R.), ELLISMAN (M.H.), TSIEN (R.Y.) - The fluorescent toolbox for assessing protein location and function. - Science, vol. 312, no 5771, p. 217-224, avr. 2006.
-
(5) - SHANER (N.C.), STEINBACH (P.A.), TSIEN (R.Y.) - A guide to choosing fluorescent proteins. - Nat. Methods, vol. 2, no 12, p. 905-909 (2005).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Saisie d'image et pilotage des périphériques
Metamorph http://www.moleculardevices.comcom/Products/Software/Meta-Imaging-Series/MetaMorph.html
Pilotage des périphériques
Micro-manager https://www.micro-manager.org/
Traitement et analyse d'images
De nombreux logiciels libres sont disponibles pour le traitement d'images. Depuis le congrès IEEE de Barcelone en juin 2012, les éditeurs travaillent à leur interopérabilité
imageJ https://imagej.nih.gov/ij/
Fiji, autre distribution de imageJ, et ImgLib2 http://www.fiji.sc/Fiji http://www.fiji.sc/wiki/index.php/ImgLib2
Icy http://www.icy.bioimageanalysis.org/
Cell profiler et Cell profiler analyst http://www.cellprofiler.org/
Projet OME (Open Microscopy Environment) conversion de format et archivage de fichiers https://www.openmicroscopy.org/
BioimageXD...
Cet article fait partie de l’offre
Bioprocédés et bioproductions
(161 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive