Présentation

Article

1 - DÉFINITIONS

2 - SIGNAUX ANALOGIQUES

3 - SIGNAUX NUMÉRIQUES

4 - INFORMATION TRANSPORTÉE PAR UN SIGNAL

  • 4.1 - Définition de l’unité d’information
  • 4.2 - Entropie d’une source discrète
  • 4.3 - Information transmise par un canal. Canal binaire symétrique
  • 4.4 - Capacité d’un canal. Exemple du canal binaire
  • 4.5 - Entropie dans le cas d’un signal analogique

Article de référence | Réf : R300 v1

Signaux numériques
Paramètres caractéristiques d’un signal

Auteur(s) : Jean AUVRAY

Date de publication : 10 juil. 1986

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Jean AUVRAY : Ingénieur de l’École Supérieure de Physique et de Chimie Industrielles de la ville de Paris - Professeur à l’Université Pierre-et-Marie-Curie

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dès que l’homme est devenu technicien et a voulu soit augmenter la sensibilité de sa perception, soit être capable de déceler de nouvelles grandeurs physiques, il a été amené à copier la nature et à développer des capteurs qui effectuent la transformation d’une grandeur physique en une autre plus perceptible, plus facile à mesurer ou à modifier (à amplifier par exemple).

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r300


Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

3. Signaux numériques

Un signal est qualifié de numérique s’il transporte une information qui est une simple suite de chiffres. Il est donc discontinu à la fois dans le temps (les chiffres se suivent l’un après l’autre) et pour l’une de ses caractéristiques (amplitude, fréquence ou phase, ne pouvant prendre qu’un nombre fini d’états).

Un phénomène physique naturel est doublement continu ; d’une part, il est défini pour toute valeur du temps, d’autre part, pour chacun de ces instants, la valeur est une fonction continue au sens des mathématiques. C’est l’opération de mesure qui fait correspondre à la valeur instantanée de la grandeur physique un nombre dont la précision dépend du dispositif de mesure employé.

Pour passer d’un signal analogique continu v (t ) au signal numérique associé, deux opérations sont nécessaires :

  • prélever périodiquement des valeurs successives du signal, c’est l’opération d’échantillonnage ; si T est l’écart constant entre deux prises d’échantillon, le résultat de l’échantillonnage est une suite de valeurs v (kT ) ;

  • remplacer l’amplitude v (kT ) par un nombre qui est le résultat de sa mesure avec une certaine unité ; ce nombre est ensuite utilisé pour modifier, via un code, la grandeur physique constituant le signal ; cette seconde opération est la conversion analogique-numérique ou quantification.

Ces opérations sont illustrées sur la figure 15.

3.1 Échantillonnage des signaux

HAUT DE PAGE

3.1.1 Théorème d’échantillonnage

Est-il possible, à partir d’échantillons d’un signal, de reconstituer ce dernier pour toute valeur de t ? La réponse est évidemment négative, il y a une infinité de courbes passant par un nombre fini de points (figure 16). Cependant, ces courbes évoluent plus ou moins vite et ont donc des spectres différents ; il en existe une seule dont la fréquence de coupure (c’est‐à‐dire la fréquence au-delà de laquelle...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Signaux numériques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AUVRAY (J.) -   Électronique des signaux analogiques.  -  Dunod (1983).

  • (2) - AUVRAY (J.) -   Électronique des signaux échantillonnés et numériques.  -  Dunod (1979).

  • (3) - AUVRAY (J.) -   Circuits et composants électroniques.  -  Hermann Collection Méthodes (1975).

  • (4) - ROUBINE (E.) -   Introduction à la théorie de la communication.  -  Tomes I, II, III, Masson (1970).

  • (5) - LARSON (H.J.), SHUBERT (B.O.) -   Probabilistic models in engineering sciences.  -  Vol. I, John Wiley (1979).

  • (6) - DE COULON (F.) -   Théorie et traitement des signaux.  -  Traité d’électricité, vol. VI, Éditions Georgi (1984).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS