Présentation
EnglishRÉSUMÉ
Cet article présente les techniques capables de détecter et de modifier la polarisation ferroélectrique à l’échelle nanométrique dans les matériaux monocristallins ou déposés en couches minces, en mettant l’accent sur l’une d’entre elles : la microscopie de force piézoélectrique (PFM), dérivée de la microscopie à force atomique (AFM). La technique y est décrite en détails : ses différents modes opératoires, ses forces et ses faiblesses, ainsi que les
artefacts qui peuvent compliquer l’interprétation des données. Des conseils de bonnes pratiques sont donnés afin de permettre aux utilisateurs non spécialistes de tirer le meilleur parti de ce type de microscopie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Brice GAUTIER : Professeur des universités - Institut des nanotechnologies de Lyon
-
David ALBERTINI : Ingénieur de recherche CNRS - Institut des nanotechnologies de Lyon
INTRODUCTION
La ferroélectricité désigne la propriété de certains matériaux de posséder une polarisation diélectrique permanente qui peut être basculée entre deux états stables par l’application d’un champ électrique extérieur. Les matériaux ferroélectriques peuvent s’organiser spontanément en domaines, c’est-à-dire en régions de polarisation uniforme. Il est également possible de créer les domaines artificiellement par l’application d’un champ électrique suffisamment important le long duquel la polarisation s’alignera. La frontière qui sépare deux domaines de polarisation différente est extrêmement fine : son épaisseur est de l’ordre du plan atomique. Les matériaux ferroélectriques sont donc des candidats très sérieux pour la réalisation de dispositifs de stockage de l’information, comme les mémoires RAM non volatiles, mais ils trouvent également des applications dans le domaine des capteurs (température, pression…), de l’optique non linéaire ou de l’électronique.
Dans ce contexte, il est crucial d’être en mesure de réaliser une cartographie de la polarisation ferroélectrique avec une résolution spatiale compatible avec les applications visées, c’est-à-dire l’échelle du nanomètre.
Cet article est consacré à la description de la technique la plus utilisée pour détecter et modifier localement la polarisation ferroélectrique avec une résolution nanométrique. Appelée « Piezoresponse Force Microscopy », elle dérive de la famille plus large des microscopies à force atomique et se fonde sur la mesure de la vibration due à l’effet piézoélectrique inverse, sous l’action d’une tension électrique imposée entre l’électrode inférieure de l’échantillon et la pointe du microscope (qui représente une électrode de taille nanométrique). Elle permet d’obtenir une cartographie de la composante verticale ou latérale de la polarisation, mais aussi de réaliser des cycles d’hystérésis locaux en arrêtant la pointe au-dessus d’une zone déterminée, et de modifier localement l’état de polarisation en appliquant des tensions continues positives ou négatives entre pointe et échantillon. Cette technique est décrite en détails ainsi que la théorie qui permet d’en comprendre le fonctionnement de manière complète. Les différents modes opératoires sont présentés. Les artefacts possibles sont également décrits et explicités, à l’exemple de l’interaction électrostatique et de la conduction ionique qui peuvent générer des signaux parasites et fausser l’interprétation des données obtenues par la technique. Des conseils de bonnes pratiques sont donnés pour tirer le meilleur parti de la méthode et éviter la sur-interprétation des résultats qu’elle fournit.
MOTS-CLÉS
microscopie à force atomique piézoélectricité ferroélectricité microscopie de force piézoélectrique polarisation diélectrique
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Principe général de la microscopie à force atomique en mode contact
La microscopie à force atomique fait partie de la grande famille des microscopies en champ proche qui partagent la caractéristique d’être fondées sur un même principe : l’approche d’une sonde de taille nanométrique au plus près de la surface à étudier. La sonde est posée sur la surface dans le cas du mode appelé « mode contact », elle se tient en moyenne à quelques nanomètres (jusqu’à quelques dizaines de nanomètres) dans le cas des modes dits « non contact » ou « contact intermittent ». Il n’entre pas dans l’objectif de cet article de décrire en détails la microscopie à force atomique, aussi nous attacherons-nous à en donner uniquement les rudiments, notamment ceux qui concernent le mode contact sur lequel est basée la cartographie de la polarisation ferroélectrique. On trouvera plus d’informations dans l’article [R 1394].
La microscopie à force atomique (AFM) repose sur une sonde constituée d’un levier auquel est attachée une pointe (voir figure 6), généralement en silicium, éventuellement recouverte d’un matériau lui conférant des propriétés magnétiques ou de conduction électrique particulières. La pointe est le plus souvent de forme étirée, quelquefois pyramidale et se termine par une partie approximativement sphérique dont le rayon est compris entre quelques nanomètres et quelques dizaines de nanomètres (typiquement 1 nm pour les meilleures pointes destinées à la topographie, 25 nm pour les pointes recouvertes de métal pour les mesures électriques et magnétiques, ou même plus de 100 nm pour les pointes recouvertes d’un revêtement en diamant).
La sonde est approchée de la surface à étudier au moyen de déplacements piézoélectriques qui permettent une précision de positionnement extrême. Notons que deux configurations sont possibles dans lesquelles le levier et la pointe sont solidaires des déplacements piézoélectriques tandis que l’échantillon...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principe général de la microscopie à force atomique en mode contact
BIBLIOGRAPHIE
-
(1) - VALASEK (J.) - Piezo-Electric and Allied Phenomena in Rochelle Salt. - In: Phys. Rev., 17, p. 475-481, DOI : 10.1103/PhysRev.17.475 (4 avr. 1921).
-
(2) - WHATMORE (W.R.) et al - Rapid reconstruction of a strong nonlinear property by a multiple lock-in technique. - In: Physical Review B, 85, p. 165426, DOI : 10.1063/ 5.0059208 (2012).
-
(3) - KAWAI (S.) et al - 100 years of ferroelectricity : a celebration. - In: Appl. Phys. Lett. Materials, 9, p. 070401, DOI : 10.1103/PhysRevB.85.165426 (2021).
-
(4) - SCOTT (J.), PAZ DE ARAUJO (C.A.) - Ferroelectric memories. - In: Science, 246.4936, p. 1400-1405, DOI : {10.1116/1.589143} (1989).
-
(5) - BALLANDRAS (S.) et al - A novel surface wave transducer based on periodically poled piezoelectric domain. - In: IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. Proceedings of the 2003, p. 893-896, DOI : 10.1109/FREQ.2003.1275208 (2003).
- ...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Mesures mécaniques et dimensionnelles
(121 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive