Présentation
Auteur(s)
-
Gilles REVEL : Docteur ès sciences - Directeur de recherche au CNRS - Laboratoire Pierre-Süe CEA-CNRS
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L‘analyse par activation est une méthode d’analyse exclusivement élémentaire. Sa mise en œuvre consiste à irradier l’échantillon à analyser dans un flux de particules appropriées, neutrons, particules chargées... et à identifier, ensuite, après irradiation, les isotopes radioactifs créés à partir des éléments à doser. Par son principe même, la méthode est unique parmi les méthodes d’analyse : l’excitation concerne le noyau de l’atome et les mesures portent sur les isotopes radioactifs artificiels ainsi créés. Il en résulte un certain nombre d’avantages : l’analyse est non seulement multiélémentaire et très sensible (limite de détection pouvant atteindre 10 −12 g et moins quelquefois) mais de plus sa réponse est indépendante de la forme chimique de l’élément. La masse de l’échantillon peut varier dans une large mesure, de quelques milligrammes à plusieurs grammes, et sa préparation est en général très simple.
La plupart des risques d’erreur (pertes et pollutions), qui guettent les méthodes classiques, peuvent être évités ou à défaut contrôlés. Après irradiation, un décapage permet de s’affranchir des pollutions de surface et les contaminations, introduites lors des séparations chimiques éventuelles, ne peuvent ni fausser les résultats, ni dégrader les limites de détection. Les mesures de radioactivité permettent d’identifier de façon très sélective chacun des atomes présents et d’en quantifier le nombre. L’étalonnage est généralement obtenu à partir soit de l’élément lui-même, soit d’un moniteur de flux, irradiés simultanément ou dans des conditions comparables. Pour le dosage des traces, cette méthode est l’une des rares à atteindre couramment et de façon sûre, ses limites théoriques de détection.
Enfin, elle peut se prêter à des analyses in situ avec des appareils d’irradiation portables et dans certains cas l’analyse de la répartition des éléments en profondeur est possible.
Par contre, la mise en œuvre de l’analyse par activation nécessite, dans la majorité des cas, des moyens lourds pour l’irradiation et la manipulation de substances radioactives. De plus, ses temps de réponse sont tributaires de la période de décroissance des radio-isotopes utilisés et peuvent atteindre plusieurs jours.
La méthode s’applique sans modification majeure à de très nombreux matériaux (métaux, semi-conducteurs, échantillons archéologiques, biologiques, géologiques...) dont la forme et la masse peuvent varier dans une large mesure. Il en va de même pour les quantités dosées qui peuvent varier du picogramme au gramme, et quelquefois même au kilogramme avec en général une précision de l’ordre de quelques pour-cent, quelle que soit la teneur, sauf au voisinage de la limite de détection.
Actuellement la méthode est surtout utilisée comme méthode d’analyse de traces et d’ultratraces, soit en tant que telle, soit pour calibrer et vérifier les résultats obtenus par d’autres méthodes, en général plus accessibles et plus rapides mais qui n’ont pas toujours la fiabilité de l’analyse par activation. La possibilité de doser simultanément, sur un même échantillon, un grand nombre d’éléments présents dans des domaines de concentration très différents, en fait aussi une méthode de choix pour des études de provenance ou de mécanisme.
VERSIONS
- Version archivée 1 de janv. 1986 par Serge MAY
- Version archivée 2 de janv. 1993 par Serge MAY, Guy PINTE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Analyse par activation aux particules chargées
La méthode est désignée sous le sigle CPAA (charged particles activation analysis).
4.1 Réactions nucléaires utilisées
Les particules chargées les plus utilisées en analyse par activation sont des particules légères : protons, deutons, tritons ( ), hélions 3 et 4 ( ). Les ions les plus lourds ont un pouvoir de pénétration réduit et sont d’un accès souvent plus difficile.
L’énergie de la particule chargée est importante à considérer, car la probabilité et même la possibilité d’existence de la réaction nucléaire dépend, non seulement de la nature de l’atome cible et de la particule incidente, mais aussi de l’énergie de cette particule. Si l’on considère une réaction :
l’énergie de la réaction sera :
M étant la masse des produits de la réaction exprimée en unité de masse atomique convertie en énergie (1 u = 931 502 keV).
Si Q . 0, la réaction est dite exoénergétique ; si Q , 0, la réaction est dite endoénergétique. Dans ce cas, la conservation de la quantité de mouvement impose que la particule incidente ait une énergie cinétique au moins égale à une énergie seuil :
comme en outre la particule incidente a une charge positive, il faut qu’elle ait une énergie suffisante pour franchir la barrière coulombienne de l’atome cible :
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Analyse par activation aux particules chargées
BIBLIOGRAPHIE
-
(1) - FEDOROFF (M.) - Contribution au calcul des conditions optimales d’irradiation et de mesure de la radioactivité en analyse par activation - . Nucl. Inst. and Methods, 91, 1971, p. 173-187.
-
(2) - PHAM THI HUYNH (M.), CARROT (F.), CHU PHAM NGOC (S.), DAND VU (M.), REVEL (G.) - Determination of rare earth elements in rice by INAA and ICP-MS - . J. Radioanal. and Nucl. Chem., 217, 1997, p. 95-99.
-
(3) - ROSENBERG (R.), LIPPONEN (M.), VANSKA (L.) - Neutron activation analysis of geological samples in free competition - a case history from Finland, - dans Comparison of Nuclear Analytical Methods with Competitive Methods, Oak Ridge, 1987, rapport IAEA-TECDOC-435, p. 219-235.
-
(4) - BACH (P.), JATTEAU (M.), MA (J.L.), LAMBERTMONT (C.) - Industrial analysis possibilities using long-life sealed-tube neutron generators - . J. Radioanal. and Nucl. Chem., 168, 1993, p. 393-401.
-
(5) - BACH (P.), BERNARDET (H.), STENGER (V.) - Operation and life of SODITRON neutron tube for industrial analysis - . 14th Int. Conf. On Application of Accelerators in Research and Industry. Denton-Texas (USA), 6-9 nov....
ANNEXES
1 Constructeurs et fournisseurs
(liste non exhaustive)
HAUT DE PAGEEADS SODERN
HAUT DE PAGE1.2 Appareils de mesure (détecteurs et électronique)
Canberra Eurisys
http://www.canberraeurisys.com
SEPH (Société d’Étude Physique) HAUT DE PAGECommission interministérielle des radioéléments artificiels (CIREA)
HAUT DE PAGE
(liste non exhaustive)
...Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive