Présentation
En anglaisRÉSUMÉ
Les dispositifs à base de microsystèmes (MEMS) représentent un grand potentiel pour la métrologie et l'instrumentation électrique de précision. De petites dimensions, de faible consommation et de coût réduit en production de masse, ils offrent de surcroît une bonne stabilité et un moindre bruit en 1/f. En pratique cependant, la stabilité des composants microsystèmes est souvent limitée par des effets de charge électrostatique aux surfaces et interfaces, ainsi que sur les couches diélectriques. les travaux actuels tentent de détourner ce problème.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Microelectromechanical systems (MEMS) provide great potential for metrology and precision electric instrumentation. In addition to their small bulk, low consumption and reduced cost in mass production, they also offer good stability and lower 1/f noise. In practice however, the stability of MEMS components is often limited by electrostatic field effects on surfaces and interfaces, as well as on dielectric layers. Ongoing research is trying to address this issue.
Auteur(s)
-
Antti MANNINEN : Groupe Manager de Métrologie électrique au Centre de Métrologie et d’Accréditation (MIKES), Espoo, Finland
-
Anna-Maija KÄRKKÄINEN : Chercheur expert à VTT Technical Research Centre of Finland, Espoo, Finland
-
Nadine PESONEN : Chercheur à VTT Technical Research Centre of Finland
-
Aarne OJA : Directeur de recherches à VTT Technical Research Centre of Finland
-
Heikki SEPPÄ : Professeur de recherches à VTT Technical Research Centre of Finland
INTRODUCTION
Les microsystèmes (en anglais « microelectromechanical systems MEMS ») peuvent offrir une alternative compétitive aux technologies classiques, pour les mesures électriques de précision. Le présent dossier fait le point sur les travaux effectués récemment dans le développement de solutions microsystèmes en métrologie électrique. Les références de tension, les convertisseurs tension efficace – continue (RMS-DC), les détecteurs de puissance hautes fréquences et les oscillateurs de référence sont étudiés. Le principe de fonctionnement de ces composants repose sur l’équilibre entre les forces électriques et les forces mécaniques de rappel dans les structures micro-usinées en silicium. Dans les voltmètres à tension efficace (RMS) et les convertisseurs RMS-DC, la relation quadratique qui lie la tension à la force entre les électrodes d’un condensateur à armatures mobiles est mise à profit ; le fonctionnement de la référence de tension à base de MEMS est fondé sur le phénomène de pull-in d’un condensateur à armatures mobiles.
Les avantages des dispositifs utilisant des microsystèmes par rapport aux solutions plus classiques sont les petites dimensions, la faible consommation d’énergie, le coût réduit de production de masse, la stabilité et le moindre bruit en 1/f. Les variations causées par les effets de charge électrostatique se sont révélées être un problème essentiel. Ce problème n’a pas encore été complètement résolu dans les applications en courant continu, mais peut être évité en utilisant un actionnement en courant alternatif et en compensant les potentiels continus internes du composant. De cette manière, une référence de tension alternative ayant une stabilité relative inférieure à 2 × 10–6 pour une période de mesure de trois semaines a été réalisée. Une bien meilleure stabilité a été démontrée avec un oscillateur de référence à base de microsystèmes : aucun changement de la fréquence de résonance n’a été observé à un niveau d’incertitude relative de 10–8 dans une mesure conduite pendant plus d’un mois.
Des composants à base de microsystèmes ont aussi été développés pour des mesures de puissance radiofréquences et micro-ondes, jusqu’à des fréquences d’environ 40 GHz. À l’inverse des détecteurs de puissance (wattmètres) hautes fréquences classiques, qui mesurent la puissance absorbée, les dispositifs microsystèmes mesurent la puissance transmise à travers le détecteur.
Ce texte a été traduit de l’anglais par Anne-Marie GAULIER.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Conclusion
Les dispositifs à base de microsystèmes représentent un grand potentiel pour la métrologie et l’instrumentation électrique. La comparaison avec les dispositifs existants est en leur faveur, tant du point de vue de la taille, du prix et de la consommation d’énergie. Le principe d’équilibre entre les forces électriques et mécaniques dans les composants microsystèmes capacitifs à plaque mobile peut s’appliquer, par exemple, à des références de tension continues et alternatives, à des convertisseurs valeur efficace-continu (RMS-DC) et à des wattmètres hautes fréquences. On s’attend à ce que la stabilité ultime des composants fabriqués à partir d’un monocristal de silicium soit très bonne, grâce aux excellentes propriétés mécaniques du monocristal de silicium. On s’attend aussi à ce que le bruit en 1/f soit faible. En pratique, cependant, la stabilité des composants microsystèmes est souvent limitée par des effets de charge électrostatique aux surfaces et interfaces, ainsi que sur les couches diélectriques. Il est indispensable d’assurer une encapsulation hermétique et une régulation de température des composants, en raison de la forte dépendance en température et en pression. Il est également important de prendre en compte les contraintes mécaniques causées par le packaging. En tant que dispositifs mécaniques, les composants microsystèmes à plaque mobile sont intrinsèquement sensibles aux vibrations mécaniques ; cet effet peut cependant être minimisé par une conception appropriée.
Les microsystèmes destinés aux applications métrologiques ont été fabriqués par différentes technologies : micro-usinage de surface, micro-usinage de volume, et procédé silicium sur isolant (SOI). Des prototypes de convertisseurs valeur efficace-continu (RMS-DC) ont été fabriqués et testés, mais leurs propriétés ne sont pas encore suffisantes pour des applications réelles. Dans ces dernières années, le développement de microsystèmes pour des applications électriques basses fréquences s’est principalement porté sur des références de tension alternatives et continues basées sur l’effet de pull-in de condensateurs micromécaniques à plaque mobile. En raison des effets de charge électrostatique, les références de tension continues ne sont pas encore assez stables pour des applications métrologiques. Ces problèmes...
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - SEPPÄ (H.), KYYNÄRÄINEN (J.), OJA (A.) - Microelectromechanical Systems in Electrical Metrology - . IEEE Trans. Instrum. Meas. 50, pp. 440-444 (2001).
-
(2) - WOLFFENBUTTEL (R.F.), VAN MULLEM (C.J.) - The Relationship Between Microsystem Technology and Metrology - . IEEE Trans. Instrum. Meas. 50, pp. 1469-1474 (2001).
-
(3) - VAN DRIEËNHUIZEN (B.P.), WOLFFENBUTTEL (R.F.) - Integrated Micromachined Electrostatic True RMS-to-DC Converter - . IEEE Trans. Instrum. Meas. 44, pp. 370-373 (1995).
-
(4) - SUHONEN (M.), SEPPÄ (H.), OJA (A.S.), HEINILÄ (M.), NÄKKI (I.) - AC and DC Voltage Standards Based on Silicon Micromechanics - . CPEM 98 Digests, Washington DC, pp. 23-24 (1998).
-
(5) - VAN DRIEËNHUIZEN (B.P.) - Integrated Electrostatic RMS-to-DC Converter - . Ph.D. Thesis, Delft University (1996).
-
(6) - DE GRAAF (G.), BARTEK (M.), XIAO...
Cet article fait partie de l’offre
Mesures et tests électroniques
(78 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive