Présentation

Article

1 - PRINCIPE DE L’EFFET AUGER

2 - INSTRUMENTS, SPECTRES ET PERFORMANCES

3 - ANALYSE QUANTITATIVE : RELATION ENTRE L’INTENSITÉ ET LA CONCENTRATION

  • 3.1 - Évaluation simplifiée des concentrations
  • 3.2 - Approche plus élaborée de la quantification
  • 3.3 - Précision des mesures
  • 3.4 - Films minces et incidence oblique

4 - SYNTHÈSE DES PERFORMANCES ET LIMITES EN SONDE FIXE

5 - CONCLUSION

Article de référence | Réf : P2620 v3

Synthèse des performances et limites en sonde fixe
Spectroscopie Auger - Principes et performances en sonde fixe

Auteur(s) : Jacques CAZAUX

Date de publication : 10 juin 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La spectroscopie Auger est une technique de microanalyse des surfaces qui permet l'identification des éléments constituant les premières couches atomiques (quelques nanomètres) de la surface des solides. Sa mise en oeuvre s'effectue dans un équipement analogue à celle d'un microscope électronique à balayage, doté de l'ultravide et équipé d'un analyseur d'électrons. Les limites de la technique sont liées aux effets perturbateurs du faisceau incident d'électrons, notamment sur les matériaux isolants ou fragiles.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

La spectroscopie des électrons Auger (AES : « Auger electron spectroscopy ») induite par les électrons est une technique d’analyse des surfaces qui permet d’identifier les éléments (sauf H et He) constituant les toutes premières couches atomiques (quelques nanomètres) de la surface des solides avec une résolution latérale qui peut atteindre quelques nanomètres et une limite de détection de quelques dizaines ou moins d’atomes identiques. Son principe repose sur le mécanisme de l’effet Auger avec l’émission d’électrons ayant des énergies cinétiques caractéristiques des éléments dont ils sont issus et indépendantes de l’énergie des particules excitatrices incidentes. Aux fins de microanalyse des surfaces, le processus Auger est généralement induit par un faisceau finement focalisé d’électrons incidents de quelques kiloélectronvolts (5 à 25 keV) dans un équipement spécifique ayant une structure analogue à celle d’un microscope électronique à balayage qui serait doté de l’ultravide et équipé d’un analyseur d’électrons. En microanalyse locale, la sonde électronique incidente est focalisée sur le détail à analyser et le spectre des électrons, émis entre 50 eV et 2,5 keV est acquis. La position énergétique des raies Auger permet de déterminer la nature des éléments constituants et la mesure de l’intensité des raies permet, elle, d’accéder à leur concentration (dosage ou quantification). La précision sur les concentrations peut atteindre 5 % at/at, notamment quand les protocoles suggérés par des normes ISO (qui résultent d’une coopération internationale, le programme VAMAS) sont suivies.

Les limites de la technique sont liées aux effets perturbateurs du faisceau électronique incident qui rendent sa mise en œuvre délicate sur des matériaux isolants (effets de charge) et sur les matériaux fragiles comme par exemple les polymères (effets thermiques).

Détaillés dans le dossier suivant , les développements de la technique concernent la possibilité d’acquérir des cartographies x, y de la répartition des éléments superficiels (en mode balayage de la sonde incidente) ou des profils en profondeur de ces mêmes éléments (en mode sonde fixe combiné à une érosion ionique). Ses performances conduisent à des applications privilégiées concernant les industries de la microélectronique (analyse et contrôle des circuits à haute intégration), de la métallurgie (pour la composition des joints de grains), de la mécanique et des traitements de surface, voire de la catalyse (pour l’analyse ponctuelle de catalyseurs dispersés) ainsi que dans les laboratoires de recherche et d’application des multicouches métalliques, en attendant son développement prévisible dans les différents domaines des nanotechnologies.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-p2620


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Synthèse des performances et limites en sonde fixe

4.1 Performances

La spectroscopie Auger permet l’identification de tous les éléments sauf H et He. Le glissement chimique peut atteindre des valeurs significatives, ∼15 eV, mais il est plus difficile à interpréter qu’en XPS, aussi les informations qu’il est susceptible de donner sont-elles moins systématiquement recherchées ? En revanche, en complément de l’identification, des éléments des informations chimiques supplémentaires peuvent être déduites de l’analyse fine de la forme des raies CVV.

On aura noté que la longueur d’atténuation des électrons Auger λ est comprise entre 0,5 et 5 nm, que la profondeur d’analyse est égale à 3λ alors que la sensibilité de surface est bien inférieure et peut être égale à une fraction de monocouche atomique. De même, la dimension latérale de l’aire analysée est d’une fraction de micron car elle inclut l’aire d’où sont issus les électrons Auger générés par les électrons rétrodiffusés mais la résolution latérale est donnée uniquement par la taille de la sonde incidente d 0, qui peut être de quelques nanomètres. Le plus petit détail détectable peut être inférieur à d 0 et être constitué de quelques dizaines d’atomes d’un même élément ou moins. Cela signifie que si l’on peut détecter des détails plus petits que d 0 leur localisation sur la surface reste liée à cette dimension, d 0. La différence entre résolution et sensibilité tient au fait que la résolution caractérise l’instrument et est donc indépendante de l’objet supposé ponctuel (résolution point à point) alors que la taille du plus petit détail détectable (sensibilité) est fonction du rapport signal sur bruit et dépend donc de l’intensité du courant primaire, du temps d’acquisition mais aussi de la nature de l’élément via l’expression de I A A [relation ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Synthèse des performances et limites en sonde fixe
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS