Présentation

Article

1 - CONTEXTE

2 - DESCRIPTION DE LA CHAÎNE DE TRAITEMENT

3 - DESCRIPTION DES DONNÉES D’ENTRÉE

4 - ÉTAPE DE SEGMENTATION AVEC U-NET

5 - ÉTAPE DE CLASSIFICATION AVEC UN RÉSEAU CONVOLUTIF SPÉCIALEMENT DÉDIÉ « CT-CASTING-NET »

6 - PERFORMANCES DE L’APPROCHE DE DÉTECTION GLOBALE

7 - DISCUSSION

8 - CONCLUSION

Article de référence | Réf : SF1500 v1

Contexte
Détection automatique de défauts en tomographie par intelligence artificielle

Auteur(s) : Valérie KAFTANDJIAN, Abdel Rahman DAKAK, Philippe DUVAUCHELLE

Date de publication : 10 sept. 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La tomographie industrielle à rayons X est reconnue comme une méthode d'inspection efficace des pièces moulées en alliage léger. Cependant, les images contiennent des artefacts qui peuvent être confondus avec des défauts par les algorithmes de segmentation conventionnels. Une approche automatique a donc été développée en trois étapes :

  • segmentation 2D des coupes tomographiques avec un réseau neuronal profond U-Net pour détecter les discontinuités; 
  • classification de ces discontinuités en vrais défauts ou fausses alarmes, à l'aide d'un réseau neuronal convolutif spécialement dédié ; 
  • localisation des défauts validés en 3D.

Le choix de chaque modèle et les résultats d'apprentissage sont discutés, ainsi que les performances en termes de probabilité de détection et de taux de fausses alarmes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Valérie KAFTANDJIAN : Professeur des Universités (Laboratoire Vibrations et Acoustique Univ Lyon, INSA Lyon, LVA, EA677)

  • Abdel Rahman DAKAK : Doctorant, (Centre technique des industries de la fonderie (CTIF) et Laboratoire Vibrations et Acoustique, Univ Lyon, INSA Lyon, LVA, EA677)

  • Philippe DUVAUCHELLE : Maître de Conférences, (Laboratoire Vibrations et Acoustique, Univ Lyon, INSA Lyon, LVA, EA677)

INTRODUCTION

Comme la radiographie, la tomographie est basée sur l’atténuation différentielle des rayons X en fonction de la densité de matière et sa composition chimique, mais elle exploite un grand nombre de vues réalisées suivant différents angles par rotation de l’objet observé. Les différentes vues permettent de déterminer l’atténuation de chaque élément de volume appelé « voxel » et ainsi de reconstituer l’objet en trois dimensions. Par rapport à la radiographie, qui produit des images du volume projeté sur le plan du détecteur, la tomographie permet d’examiner la matière par tranches ou coupes fictives. Cela évite d’être gêné par les nombreuses variations d’épaisseurs ou par les projections de parois qui sont caractéristiques de la radiographie, et ainsi la reconnaissance de la nature des discontinuités (ou défauts) présentes est grandement facilitée. La tomographie est ainsi un outil de choix lors de la mise au point de pièces ou en expertise. Grâce à l’accélération des moyens de calcul, la tomographie commence à être utilisée en contrôle de production.

La question de l’interprétation des données devient alors une problématique cruciale. En effet, pour examiner la totalité du volume, il faut faire défiler à l’écran les coupes virtuelles 2D ou utiliser un algorithme permettant une représentation en 3D du volume de l’objet, et interpréter l’ensemble du volume est très lourd à réaliser manuellement. Sur une ligne de production, il est nécessaire de disposer d’un traitement automatique des données afin de détecter les discontinuités (manque de matière ou inclusions). Une telle tâche peut être réalisée avec des traitements de filtrage de bruit et seuillage adaptatif, mais les performances atteintes résultent d’un compromis entre détection des petits défauts, et détection de fausses alarmes, dues en particulier au fait que la tomographie est sujette à des artefacts de reconstruction. L’avènement des réseaux de neurones convolutifs, et le succès obtenu sur des images naturelles par des réseaux profonds, permettent de penser que les performances doivent être bonnes dans une situation de contrôle non destructif telle que la tomographie.

Cet article propose de montrer l’utilité des méthodes de détection automatique de défauts dans des images de tomographie industrielle en utilisant des réseaux de neurones convolutifs. Le domaine d’application visé est la fonderie d’aluminium, mais d’autres domaines sont possibles, sous réserve de définir une base de données adéquate.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-sf1500


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Contexte

Pour le secteur industriel de la fonderie qui produit des pièces métalliques aux formes « tourmentées » avec souvent des conduits internes, la tomographie est un outil d’analyse de la santé interne des pièces très intéressant. Le positionnement des discontinuités dans l’épaisseur devient possible ainsi que leur visualisation suivant plusieurs orientations. Cela permet d’envisager des critères d’acceptation des pièces en fonction de la position de la discontinuité par rapport à la surface ou par rapport à une zone critique très sollicitée.

Actuellement, la conformité de la santé interne des pièces de fonderie est réalisée en comparant des images radiographiques 2D avec des images de référence disponibles auprès de l’ASTM . L’inconvénient est que cela peut conduire à rebuter une pièce alors que la discontinuité se situe dans la fibre neutre et n’aura pas d’influence sur sa durée de vie en service.

À l’inverse, de petites indications situées en zone superficielle critique peuvent être conformes au cahier des charges client et néanmoins conduire à des ruptures prématurées de pièces. Avec la tomographie, il est possible de savoir si les discontinuités vont partir à l’usinage ou déboucher en surface ou si elles se situent dans une zone désignée dangereuse pour la tenue mécanique de la pièce.

En France et en Europe occidentale, des fonderies se sont équipées avec des tomographes industriels pour le développement et la mise au point des pièces mais aussi pour le contrôle de production. Dans ce dernier cas, le but est d’avoir des informations pertinentes sur le suivi de la qualité de la production afin d’anticiper des dérives éventuelles. Dans le secteur automobile, toutes les pièces ne peuvent pas être contrôlées en tomographie et la tendance est de privilégier les temps d’acquisition courts, plutôt que la recherche de résolution. Malgré tout, en tomographie le volume de données est très important, aussi une exploitation manuelle coupe par...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Contexte
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ASTM International -   ASTM E2422-17, Standard Digital Reference Images for Inspection of Aluminum Castings,  -  ASTM International, West Conshohocken, PA (2017), http://www.astm.org

  • (2) - SUN (W.), BROWN (S.B.), LEACH (R.K.) -   An overview of industrial X-ray computed tomography  -  (2012).

  • (3) - RONNEBERGER (O.), FISCHER (P.), BROX (P.), U-Net -   Convolutional Networks for Biomedical Image Segmentation,  -  Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234-241 (2015).

  • (4) - ÇIÇEK (Ö.), ABDULKADIR (A.), LIENKAMP (S.S.), BROX (T.), RONNEBERGER (O.) -   3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,  -  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9901 LNCS, pp. 424-432, jun 2016.

  • (5) - MILLETARI (F.), NAVAB (N.), AHMADI (S.A.) -   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation,  -  Proceedings - 2016 4th International...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS