Présentation
EnglishRÉSUMÉ
Le frittage flash, ou spark plasma sintering, est une des techniques émergentes de frittage retenue pour la synthèse et l’assemblage des nouveaux matériaux polymères, métaux et céramiques nanostructurés et nanocomposites. Ce procédé s’apparente au pressage à chaud conventionnel, auquel sont associées des séries d’impulsions de courant électrique de forte intensité. Cette technique permet d’augmenter la cinétique de frittage et donc de réduire par là même le temps disponible pour le grossissement des grains. Déjà industrialisé au Japon, le frittage flash permet des avancées technologiques considérables dans les domaines de l’électronique de puissance, les matériaux de structure, les biomatériaux, l’aéronautique et l’aérospatiale.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
INTRODUCTION
La densification ou la mise en forme de matériaux spécifiques tels que les métaux, les alliages ou les céramiques nanostructurées, les nanocomposites ou encore les matériaux hautement réfractaires a entraîné le développement de techniques non conventionnelles de frittage, dans le but d’augmenter significativement les cinétiques de frittage. Parmi ces techniques émergentes, le frittage flash, ou spark plasma sintering (SPS), semble très prometteur et vit une montée en puissance spectaculaire.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Verres et céramiques > Céramiques : propriétés et élaboration > Mise en forme de matériaux par frittage flash > Contexte
Accueil > Ressources documentaires > Matériaux > Mise en forme des métaux et fonderie > Métallurgie des poudres > Mise en forme de matériaux par frittage flash > Contexte
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Contexte
Claude ESTOURNES, docteur en sciences des matériaux, est chargé de recherche CNRS au Centre interuniversitaire de recherche et d’ingénierie des matériaux (CIRIMAT – UMR 5085 CNRS-UPS-INPT).
Dans le domaine des sciences de la matière, les matériaux nanostructurés ont connu un essor considérable ces dernières années. Ce monde des nanomatériaux concerne aussi bien celui de la matière molle que celui de la matière solide et les champs d’applications sont extrêmement vastes puisqu’ils s’étendent de l’optoélectronique aux biomatériaux. Le but ultime est de transposer à l’échelle macroscopique les propriétés spécifiques des états très divisés de la matière. Les objets en question sont des macromolécules, des assemblées moléculaires, des particules, des grains (amorphes ou cristallins) dont la taille est toujours située dans le domaine du « colloïdal » ou plus généralement du mésoscopique, allant du nanomètre à quelques centaines de nanomètres. La nature de ces clusters, particules ou grains est variable : polymères, métaux, « céramiques », diélectriques, oxydes magnétiques, charpentes silicatées, nanotubes de carbone... Leur spécificité provient notamment du fait que leur petite taille peut engendrer des phénomènes de confinement mais également du fait que les surfaces et les interfaces exercent des influences multiples sur les propriétés. Tout cela a des répercussions sur les propriétés mécaniques, optiques, magnétiques, thermodynamiques, catalytiques et chimiques.
Sur le frittage :
Mise en forme des solides. Aspects théoriques [J 3 380] de B. Castel
Mise en forme des solides. Procédés et appareils [J 3 382] de B. Castel
Dans ce large champ d’investigation, un problème crucial reste à résoudre. Lors de la mise en forme de ces objets, les différents traitements ne doivent...
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contexte
BIBLIOGRAPHIE
-
(1) - RISBUD (S.H.), SHAN (S.-H.), MUKHERJEE (A.K.), KIM (M.J.), BOW (J.S.), HOLL (R.A.) - Retention of nanostructure in aluminum oxide by very rapid sintering at 1 150 ˚C - . J. Mater. Res., 10, 237 (1995).
-
(2) - LIAO (S.-C.), CHEN (Y.-J.), KEAR (B.H.), MAYO (W.E.) - High pressure/low temperature sintering of nanocrystalline alumina. - Nanostruct. Mater., 10, 1063 (1998).
-
(3) - KLEINLOGEL (C.), GAUCKLER (L.J.) - Sintering of Nanocrystalline CeO2 Ceramics - . Adv. Mater. 13, 1081 (2001).
-
(4) - CHEN (I.-W.), WANG (X.-H.) - Sintering dense nanocrystalline ceramics without final-stage grain growth - . Nature 404, 168 (2000).
-
(5) - TAYLOR (G.F.) - * - US Patent, no 1 896 854 (1933).
-
(6) - CREMER (G.D.) - * - US Patent, no 2 355 954 (1944).
-
...
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive