Présentation
EnglishAuteur(s)
-
Marc DEMOULIN : Responsable des calculs de mécanique des fluides thermiques et vibrations au Centre de Modélisation et d’Analyse Scientifique, Direction des études de Renault
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les performances d’un moteur à explosion, qu’il soit Diesel ou à allumage commandé, à deux ou à quatre temps, à aspiration naturelle ou suralimenté, sont conditionnées directement par la masse d’air introduite dans le cylindre. Cette masse d’air détermine la quantité maximale de combustible que l’on peut introduire et donc l’énergie totale disponible. Cette énergie est transformée, au cours du cycle moteur, en énergie mécanique sur un arbre, mais également aussi en imbrûlés, en pertes à l’échappement et en pertes thermiques.
L’optimisation de cette quantité d’air introduite dans le cylindre nécessite l’étude des écoulements instationnaires qui ont lieu dans les systèmes d’admission et d’échappement des moteurs thermiques. Cette optimisation s’effectue en déterminant les longueurs et les sections des conduits (suralimentation par effet Kadenacy), les volumes des différents éléments (résonances de tubulures sur des volumes : filtre à air ou cylindre), ainsi que les caractéristiques de la distribution (diamètre et nombre de soupapes, calage des lois de levées, étalement, levée maximale, accélération maximale admissible, caractéristiques des lumières pour les moteurs deux temps).
Ces considérations s’appliquent aussi bien aux moteurs alternatifs qu’aux moteurs rotatifs, qui ne diffèrent que par les conceptions cinématiques de variation de volume.
Nous allons décrire tout d’abord 1 les phénomènes physiques que l’on rencontre lors de l’étude des transferts de gaz dans un moteur avec quelques exemples de sensibilité à différents paramètres, tels que la distribution, les échanges de chaleur, les pertes de charge, l’acoustique ou les variations de section. Puis nous présenterons une approche par modélisation numérique permettant d’étudier ces phénomènes. Les équations qui peuvent s’appliquer pour étudier les écoulements dans les tubulures seront décrites 2, ainsi que les principales méthodes de résolution 3 qui sont utilisées actuellement (pour plus de détails, on pourra se reporter à l’article Écoulements instationnaires [A 1 920] dans le traité Sciences fondamentales). Nous aborderons également 4 la modélisation des cylindres, des volumes, des pertes de charge singulières (papillon, coudes, etc.) et des turbocompresseurs. Nous mettrons ensuite en évidence un certain nombre de problèmes qui se posent, en particulier concernant la modélisation des transferts thermiques 5 et nous examinerons alors les principaux modèles rencontrés. Les mêmes difficultés se posent pour l’étude des pertes de charge 6, surtout en régime instationnaire, qui feront également l’objet d’un certain nombre de considérations. Ce chapitre se terminera par les méthodes de mesure 7 et les tendances actuelles 8 visant à optimiser le remplissage d’un moteur.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Phénomènes physiques
Décrivons les écoulements dans les systèmes d’admission et d’échappement des moteurs (figure 1), en essayant de dégager les facteurs dont l’influence est la plus importante sur les transferts de masse.
1.1 Généralités
1.1.1 Coefficients de remplissage et de balayage
Les performances d’un moteur sont conditionnées directement par la masse d’air admise dans le cylindre :
-
en masse par cycle, ce qui permet de caractériser le couple ;
-
en débit-masse, ce qui permet de caractériser la puissance.
Le coefficient de remplissage est le rapport entre la masse d’air M présente dans le cylindre par cycle et une masse de référence qui est la masse contenue dans un volume égal à la cylindrée V 0 dans des conditions d’état prises comme référence. Ces conditions peuvent être celles du milieu ambiant dont la masse volumique est ρ 0 .
Dans ces conditions :
Cette grandeur est difficilement mesurable. Le débit qui traverse le moteur est, par contre, plus facilement mesurable, soit directement par débitmètre (par exemple avec un col sonique) dans l’admission, soit indirectement en mesurant le débit d’essence et la richesse par analyse des gaz d’échappement.
Ce débit permet de définir le coefficient de balayage :
coefficient de balayage = masse d’air admise par cycle / ρ 0 V 0
On en déduit ainsi la masse d’air admise par cycle. Une partie de cette masse reste dans le cylindre (et constitue le remplissage), l’autre partie est refoulée par l’échappement après avoir traversé le cylindre pendant la phase de croisement (période pendant laquelle les soupapes, ou les lumières, d’admission et d’échappement sont simultanément ouvertes).
Le rapport entre coefficients de remplissage et de balayage permet...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Phénomènes physiques
BIBLIOGRAPHIE
-
(1) - COURANT, FRIEDRICHT - Supersonic flow and shock waves. - Interscience vol. 1, (1967).
-
(2) - LERAT (A.), PEYRET (R.) - Sur le choix de schémas aux différences du second ordre fournissant des profils de choc sans oscillation. - Comptes Rendus Acad. Sc. Paris t.277, p. 363-366, (1973).
-
(3) - LERAT (A.), PEYRET (R.) - Propriétés dispersives et dissipatives d’une classe de schémas aux différences pour les systèmes hyperboliques non linéaires. - Rech. Aérosp. no 1 975-2, p. 61-79, (1975).
-
(4) - LERAT (A.) - Thèse de doctorat sur le calcul des solutions faibles des systèmes hyperboliques de lois de conservaton à l’aide de schémas aux différences, - (1981).
-
(5) - NUSSELT (W.) - Der Wärmeübergang in der Verbrennungskraftmaschinen. - VDI Forsch, (1923).
-
(6)...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive