Présentation
En anglaisAuteur(s)
-
Max AUCHER : Ingénieur Général de l’Armement - Ancien Directeur du Bassin d’Essais des Carènes de Paris
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’utilisation de l’hélice pour la propulsion des navires a vu le jour dans la première moitié du 19 e siècle lorsque les machines à vapeur alternatives eurent atteint un degré de fiabilité et un rendement acceptables pour pouvoir concurrencer les bateaux à voiles pour lesquels l’énergie du vent était gratuite. Ce n’est que dans la deuxième moitié du 19 e siècle que l’hélice l’emporta définitivement sur les voiles et les roues à aubes, ces dernières n’étant plus guère utilisées de nos jours que dans quelques cas pour la navigation intérieure dans un but plutôt touristique.
Plusieurs pays revendiquent la paternité de l’invention de l’hélice dans les années 1830. Côté français, l’inventeur de l’hélice est Frédéric Sauvage dont le brevet a été déposé en 1832.
Les premières hélices n’étaient ni plus ni moins qu’une vis d’Archimède à deux filets dont la longueur était égale au pas géométrique. Le commandant d’un navire qui avait vu son hélice réduite accidentellement à la moitié de sa longueur constata, non sans surprise, que la vitesse de son navire en était augmentée. Ainsi, par modifications successives de la forme des pales et de leur nombre résultant d’essais sur modèles et sur bateaux réels, l’hélice aboutit aux formes actuelles. Sauf pour des applications spéciales, l’hélice est l’organe propulsif de presque la totalité des bateaux depuis le petit bateau de plaisance motorisé jusqu’aux énormes pétroliers de plusieurs centaines de milliers de tonnes.
De nombreux essais d’hélices modèles ont permis de définir leurs caractéristiques hydrodynamiques (poussée, rendement) en fonction du nombre et de la géométrie des pales. Ces résultats, publiés sous forme de courbes, permettent de définir rapidement la géométrie des hélices répondant en première approximation à des spécifications données.
Deux problèmes importants font encore aujourd’hui l’objet de nombreuses recherches destinées à améliorer les performances des hélices : la cavitation et les vibrations de navires induites par le fonctionnement de l’hélice. Le développement de l’hydrodynamique appliquée aux hélices et des calculateurs de plus en plus puissants permet d’aborder ces deux problèmes d’une façon plus rationnelle et de définir les tracés d’hélices donnant le meilleur compromis entre diverses contraintes (rendement, cavitation, vibration, tenue mécanique, etc.). C’est ce que nous allons plus particulièrement développer dans cet article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Ingénierie des transports > Transport fluvial et maritime > Hydrodynamique, navires et bateaux > Hélices marines > Caractéristiques géométriques et hydrodynamiques
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Caractéristiques géométriques et hydrodynamiques
1.1 Définition de la géométrie d’une hélice
Initialement, les pales d’hélice étaient constituées d’une fraction de surface hélicoïdale à pas constant. Pour des questions de vibrations et de cavitation (§ 3 et 4), le pas géométrique de la pale d’hélice peut varier entre le moyeu et l’extrémité des pales.
D’un point de vue purement géométrique, une hélice est constituée de Z pales identiques également espacées.
Les pales ont des formes variées (figures 1 et 3). En général, vue de l’arrière, la forme d’une pale n’est pas symétrique par rapport à un rayon : elle présente un devers plus ou moins prononcé. Vue par le travers, la pale est, en général, également inclinée vers l’arrière. D’une façon plus précise, la géométrie de la pale est définie à partir d’une courbe rencontrant l’axe appelée génératrice. Cette courbe définit généralement le milieu des sections de la pale (mais ce n’est pas une règle), sections qui sont empilées les unes sur les autres suivant la loi définissant la valeur du pas P (r ) fonction du rayon r.
Compte tenu du mouvement de rotation de l’hélice, une section de pale est définie par le développement de l’intersection de la pale par un cylindre de rayon r centré sur l’axe. Chaque section développée a la forme d’un profil...
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Caractéristiques géométriques et hydrodynamiques
BIBLIOGRAPHIE
-
(1) - VAN LAMMEREN (P.A.), VAN MANEN (J.D.), OOSTERVELD (M.W.) - The wageningen B-screw series. - Society of Naval Architects and Marine Engineers (NSMB), 1969.
-
(2) - CARLTON (J.S.) - Marine Propellers and Propulsion. - Butterworth Heineman Ltd, 1994.
-
(3) - KUIPER (J.) - The wageningen propeller series (caractéristiques d’hélices et d’hélices sous tuyère, plus disquette donnant le développement en série des caractéristiques des hélices citées dans le livre). - Marin Software Engineering Dept, mai 1992.
-
(4) - Bureau Veritas - Building and operations of vibrations free propulsion plant and ships (construction et solutions pour supprimer les vibrations des navires dues à la propulsion), - NR. 207 - SMSE, 1987.
-
(5) - Proceedings of ITTC : - Comptes-rendus des Conférences Internationales des Bassins de Carènes. L’International Towing Tank Conference (ITTC) comprend entre autres un comité hélice et un comité cavitation dont les rapports (tous les 3 ans) font la synthèse des travaux effectués...
ANNEXES
(liste non exhaustive)
Renou-Dardel SA.
Helicia SA.
Alstom Marine http://www.marine.alstom.com
Alstom Power Conversion http://www.powerconv.alstom.com
Moteurs Baudouin http://www.moteurs-baudouin.fr
France Hélices http://www.francehelices.fr
Rolls-Royce http://www.rolls-royce.com
HAUT DE PAGECet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive