Présentation
En anglaisAuteur(s)
-
Max AUCHER : Ingénieur Général de l’Armement - Ancien Directeur du Bassin d’Essais des Carènes de Paris
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’utilisation de l’hélice pour la propulsion des navires a vu le jour dans la première moitié du 19 e siècle lorsque les machines à vapeur alternatives eurent atteint un degré de fiabilité et un rendement acceptables pour pouvoir concurrencer les bateaux à voiles pour lesquels l’énergie du vent était gratuite. Ce n’est que dans la deuxième moitié du 19 e siècle que l’hélice l’emporta définitivement sur les voiles et les roues à aubes, ces dernières n’étant plus guère utilisées de nos jours que dans quelques cas pour la navigation intérieure dans un but plutôt touristique.
Plusieurs pays revendiquent la paternité de l’invention de l’hélice dans les années 1830. Côté français, l’inventeur de l’hélice est Frédéric Sauvage dont le brevet a été déposé en 1832.
Les premières hélices n’étaient ni plus ni moins qu’une vis d’Archimède à deux filets dont la longueur était égale au pas géométrique. Le commandant d’un navire qui avait vu son hélice réduite accidentellement à la moitié de sa longueur constata, non sans surprise, que la vitesse de son navire en était augmentée. Ainsi, par modifications successives de la forme des pales et de leur nombre résultant d’essais sur modèles et sur bateaux réels, l’hélice aboutit aux formes actuelles. Sauf pour des applications spéciales, l’hélice est l’organe propulsif de presque la totalité des bateaux depuis le petit bateau de plaisance motorisé jusqu’aux énormes pétroliers de plusieurs centaines de milliers de tonnes.
De nombreux essais d’hélices modèles ont permis de définir leurs caractéristiques hydrodynamiques (poussée, rendement) en fonction du nombre et de la géométrie des pales. Ces résultats, publiés sous forme de courbes, permettent de définir rapidement la géométrie des hélices répondant en première approximation à des spécifications données.
Deux problèmes importants font encore aujourd’hui l’objet de nombreuses recherches destinées à améliorer les performances des hélices : la cavitation et les vibrations de navires induites par le fonctionnement de l’hélice. Le développement de l’hydrodynamique appliquée aux hélices et des calculateurs de plus en plus puissants permet d’aborder ces deux problèmes d’une façon plus rationnelle et de définir les tracés d’hélices donnant le meilleur compromis entre diverses contraintes (rendement, cavitation, vibration, tenue mécanique, etc.). C’est ce que nous allons plus particulièrement développer dans cet article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Ingénierie des transports > Transport fluvial et maritime > Hydrodynamique, navires et bateaux > Hélices marines > Cavitation
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Cavitation
3.1 Considérations théoriques
La cavitation est un phénomène fort complexe difficile à maîtriser, bien connu des hydrauliciens et des hydrodynamiciens. Pour situer le problème, rappelons brièvement comment se présente le phénomène de cavitation dans le cas des hélices marines.
Schématiquement, si dans un liquide la pression devient inférieure à la tension de vapeur p v du liquide, celui-ci tend à se vaporiser sous forme de petites bulles allant en grossissant, voire même former des poches de vapeur.
Dans le domaine maritime, et plus particulièrement pour les hélices, ce phénomène est très gênant car il est à l’origine d’érosions, de chutes de performances, de bruit et de vibrations.
Pour un corps placé dans un écoulement, il y a une relation entre la pression statique p et la vitesse V à la surface du corps, d’une part, et la pression p 0 et la vitesse V 0 de l’écoulement non perturbé, d’autre part (théorème de Bernoulli) :
On définit ainsi le coefficient de pression :
S’il y a cavitation, p = p v et on appelle nombre de cavitation σ0 le rapport :
Dans ce rapport p 0 et p v sont des pressions absolues. Pour les applications pratiques, il est commode d’exprimer ces pressions en mètres de fluide. Pour l’eau, p v = 0,17 m à 15 oC et 0,23 m à 20 oC. Quant à p 0 à la surface de l’eau, on peut prendre p 0 = 10 m, si bien que p v peut être négligé. On peut alors écrire :
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Cavitation
BIBLIOGRAPHIE
-
(1) - VAN LAMMEREN (P.A.), VAN MANEN (J.D.), OOSTERVELD (M.W.) - The wageningen B-screw series. - Society of Naval Architects and Marine Engineers (NSMB), 1969.
-
(2) - CARLTON (J.S.) - Marine Propellers and Propulsion. - Butterworth Heineman Ltd, 1994.
-
(3) - KUIPER (J.) - The wageningen propeller series (caractéristiques d’hélices et d’hélices sous tuyère, plus disquette donnant le développement en série des caractéristiques des hélices citées dans le livre). - Marin Software Engineering Dept, mai 1992.
-
(4) - Bureau Veritas - Building and operations of vibrations free propulsion plant and ships (construction et solutions pour supprimer les vibrations des navires dues à la propulsion), - NR. 207 - SMSE, 1987.
-
(5) - Proceedings of ITTC : - Comptes-rendus des Conférences Internationales des Bassins de Carènes. L’International Towing Tank Conference (ITTC) comprend entre autres un comité hélice et un comité cavitation dont les rapports (tous les 3 ans) font la synthèse des travaux effectués...
ANNEXES
(liste non exhaustive)
Renou-Dardel SA.
Helicia SA.
Alstom Marine http://www.marine.alstom.com
Alstom Power Conversion http://www.powerconv.alstom.com
Moteurs Baudouin http://www.moteurs-baudouin.fr
France Hélices http://www.francehelices.fr
Rolls-Royce http://www.rolls-royce.com
HAUT DE PAGECet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive