Présentation

Article

1 - CONTEXTE

2 - DE L'INSECTE VOLANT AUX NANODRONES

3 - DÉFIS SCIENTIFIQUES ET TECHNOLOGIQUES

4 - CONCEPTS MIS EN ŒUVRE

5 - APPROCHE OVMI

6 - TESTS ET RÉSULTATS

7 - CONCLUSION ET PERSPECTIVES

Article de référence | Réf : IN217 v1

Tests et résultats
Développement d'un insecte artificiel - Nanodrone dédié à la surveillance intra-bâtiment

Auteur(s) : Thomas VANNESTE, Alexandre BONTEMPS, Caroline SOYER, Jean-Bernard PAQUET, Olivier THOMAS, Eric CATTAN, Sébastien GRONDEL

Date de publication : 10 juil. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Dans l'optique de réaliser de la surveillance intra-bâtiment avec un système autonome, mobile, très discret, des recherches sont en cours pour développer des nanodrones. Elles se concentrent sur la compréhension et l'imitation du vol battu des insectes et sur les aspects de la miniaturisation. Cet article décrit la conception et la réalisation d'un insecte artificiel à ailes résonantes à l'aide des technologies de microfabrication de la microélectronique. Un actionneur électromagnétique induit un mouvement de flexion/torsion des ailes correspondant à une cinématique similaire à celle des insectes. L'estimation des phénomènes aéroélastiques en grands déplacements est réalisée à l'aide d'un modèle basé sur les éléments finis et une formulation analytique de l'aérodynamique. Une validation expérimentale est ensuite proposée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Development of an artificial insect

To achieve intra-building surveillance with autonomous, mobile and very discreet system, research is underway to develop nano air vehicles (or nano drones). It focuses on the understanding and imitation of flapping flight of insects and on miniaturization. This article describes the design and micro-fabrication of an artificial insect with resonant wings using microelectronics technologies. An electromagnetic actuator induces a bending / twisting motion of the wings corresponding to insect-like kinematics. Aero-elastic phenomena in large displacements are estimated using a model based on the finite elements method and on an analytical formulation of aerodynamics. An experimental validation is then proposed.

Auteur(s)

  • Thomas VANNESTE : Ingénieur, Institut d'électronique, de microélectronique et de nanotechnologie de Valenciennes (IEMN, UMR CNRS 8520), France

  • Alexandre BONTEMPS : Ingénieur Sensefly, Cheseaux-Lausanne, Suisse

  • Caroline SOYER : Maître de conférences à l'université de Valenciennes et du Hainaut Cambrésis, Institut d'électronique, de microélectronique et de nanotechnologie de Valenciennes (IEMN, UMR CNRS 8520), France

  • Jean-Bernard PAQUET : Ingénieur de recherche à l'Office national d'étude et de recherche aérospatiale, Lille, France

  • Olivier THOMAS : Professeur des universités au Campus de Lille d'Arts et Métiers ParisTech et au Laboratoire des sciences de l'information et des systèmes (LSIS, UMR CNRS 7296), France

  • Eric CATTAN : Professeur à l'université de Valenciennes et du Hainaut Cambrésis, Institut d'électronique, de microélectronique et de nanotechnologie de Valenciennes (IEMN, UMR CNRS 8520), France

  • Sébastien GRONDEL : Professeur à l'École nationale supérieure d'ingénieurs en informatique, automatique, mécanique, énergétique, électronique (ENSIAME), Institut d'électronique, de microélectronique et de nanotechnologie de Valenciennes (IEMN, UMR CNRS 8520), France

INTRODUCTION

Points clés

Domaine : Nanodrone

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : Techniques de microfabrication utilisées pour réaliser des microsystèmes

Domaines d'application : Surveillance militaire ou civile intra-bâtiment

Autres acteurs dans le monde : Université de Harvard, Microrobotics Laboratory Prof. Robert Wood

Contact : [email protected]

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in217


Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(173 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

6. Tests et résultats

Réaliser des mesures sur un prototype est un défi en soi : celles-ci nécessitent d'être faites avec une précision proche du micromètre et à une fréquence d'acquisition supérieure à la vitesse d'actionnement des ailes afin de suivre temporellement leurs évolutions.

6.1 Bancs expérimentaux

Afin d'analyser avec précision le mouvement dans l'espace des ailes de nos prototypes et de pouvoir caractériser les phénomènes induits, plusieurs bancs d'essais ont été mis au point. Durant ces travaux, l'outil principal a été la caméra rapide. Grâce à sa haute fréquence d'acquisition (jusqu'à 6 600 images par seconde en pleine résolution), la caméra permet de visualiser progressivement et en détail la déformation de l'aile et son évolution au cours du battement (figure 24 a). Par exemple, en couplant cette caméra à un logiciel de suivi de points, il est possible d'extraire la cinématique de l'OVMI et ainsi pouvoir travailler quantitativement à son amélioration.

De même, pour appréhender qualitativement les phénomènes aérodynamiques en jeu, la caméra a été couplée à un plan laser et à un injecteur de fumée pour réaliser des essais de tomoscopie laser (figure 24 b). Il est ainsi possible de suivre et d'identifier les différents phénomènes tourbillonnaires générés autour et dans le sillage de l'aile, notamment le tourbillon de bord d'attaque et la capture de sillage. Différentes visualisations ont permis de montrer que l'écoulement correspond globalement à celui des insectes  , validant ainsi le concept d'ailes résonantes...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(173 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Tests et résultats
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GRASMEYER (J.), KEENNON (M.) -   Development of the black widow micro air vehicle.  -  39th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, NV, États-Unis, p. 1-9 (2001).

  • (2) -   *  -  ProxDynamics http://www.proxdynamics.com/products/ Dernière consultation : 16/05/2015

  • (3) - BRUGGEMAN (B.) -   Improving flight performance of DelFly II in hover by improving wing design and driving mechanism.  -  Delft Univ. Technol. M. Sc. thesis (2010).

  • (4) -   *  -  AeroVironement Inc. http://www.avinc.com/ Dernière consultation : 16/05/2015

  • (5) - CHIRARATTANANON (P.), MA (K.Y.), WOOD (R.J.) -   Adaptive control of a millimeter-scale flapping-wing robot.  -  Bioinspir. Biomim., 9, 025004 (2014).

  • (6) - KARPELSON (M.), WOOD (R.J.) -   A review of actuation...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(173 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS