Présentation

Article

1 - ORIGINE DES LIQUIDES

2 - LES DIFFÉRENTES ÉTAPES DU FRITTAGE EN PHASE LIQUIDE

3 - FRITTAGE PAR FLUX VISQUEUX

4 - PARAMÈTRES DU FRITTAGE EN PRÉSENCE D’UNE PHASE LIQUIDE

Article de référence | Réf : AF6621 v1

Paramètres du frittage en présence d’une phase liquide
Frittage : aspects physico-chimiques - Partie 2 : frittage en phase liquide

Auteur(s) : Didier BERNACHE-ASSOLLANT, Jean-Pierre BONNET

Date de publication : 10 juil. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le frittage en phase liquide utilise les propriétés des liquides pour faciliter la cohésion des grains, constituer des composés fondant à température assez basse, ou aider au frittage de diverses céramiques, notamment les produits fortement covalents. Cet article détaille les différents phénomènes  observés lors du frittage en phase liquide : réarrangement, dissolution, grossissement des grains, influence de la viscosité, caractéristiques du frittage par flux visqueux. Pour terminer, chaque paramètre influant le frittage en phase liquide est passé en revue.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Didier BERNACHE-ASSOLLANT : École nationale supérieure des mines (Saint-Étienne)

  • Jean-Pierre BONNET : École nationale supérieure de céramique industrielle - Groupe d’étude des matériaux hétérogènes (Limoges)

INTRODUCTION

Lors de l’introduction d’un liquide dans un empilement granulaire quelconque, différents phénomènes peuvent être observés : la cohésion entre les grains augmente (tas de sable légèrement humide), une partie de la porosité est éliminée du fait de la migration du liquide dans les pores parfois accompagnée d’une contraction de l’empilement. De plus, certaines transformations très lentes peuvent être accélérées du fait de la diffusion plus rapide dans la phase liquide.

Ces propriétés des liquides sont utilisées depuis longtemps pour faciliter le frittage. Ainsi, la grésification est la règle pour les céramiques silicatées, où les réactions entre les constituants de départ forment des composés fondant à température assez basse, avec développement d’une abondante quantité de liquide visqueux.

Diverses céramiques techniques sont également frittées en présence d’une phase liquide. C’est notamment le cas des produits fortement covalents comme les nitrures, les carbures et les borures, pour lesquels les températures qu’il faut atteindre pour observer une densification significative par frittage en[nbsp ]phase solide sont soit trop élevées, soit incompatibles avec la stabilité chimique du composé. La solution généralement retenue pour densifier ces produits consiste à favoriser l’apparition d’un liquide dans la microstructure grâce à un ajout convenablement choisi. Ce frittage peut être effectué avec ou sans application d’une pression extérieure.

Il est rare que le frittage en phase liquide n’implique pas de réactions chimiques ; lorsque l’influence de ces réactions n’est pas prépondérante, ce sont les effets d’interface qui prédominent.

Nota :

Le frittage en phase solide a été traité dans la partie 1 de cet exposé, dossier  de ce traité. En cas de besoin, le lecteur pourra s’y reporter.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af6621

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Matériaux Mise en forme des métaux et fonderie Métallurgie des poudres Frittage : aspects physico-chimiques - Partie 2 : frittage en phase liquide Paramètres du frittage en présence d’une phase liquide

Accueil Ressources documentaires Mécanique Travail des matériaux - Assemblage Procédés de fabrication additive Frittage : aspects physico-chimiques - Partie 2 : frittage en phase liquide Paramètres du frittage en présence d’une phase liquide

Accueil Ressources documentaires Sciences fondamentales Physique Chimie Fondamentaux en chimie Frittage : aspects physico-chimiques - Partie 2 : frittage en phase liquide Paramètres du frittage en présence d’une phase liquide


Cet article fait partie de l’offre

Fabrication additive – Impression 3D

(55 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Paramètres du frittage en présence d’une phase liquide

4.1 Quantité de liquide

L’étape de réarrangement des grains 2.1 est associée à une distribution du liquide formé. Dans le cas d’un empilement granulaire quasi compact (compacité » 60 %), Kingery [5] [6] a montré que l’on pouvait représenter schématiquement la contribution de ce réarrangement à la densification par le graphique de la figure 13. Pour une fraction volumique de liquide donnée, le retrait n’est dû qu’à des phénomènes de réarrangement s’il est inférieur à la valeur correspondant à la courbe.

Si la présence d’une quantité importante de flux est nécessaire pour obtenir une céramique dense par frittage par flux visqueux, il n’en est pas de même lorsqu’un mécanisme de dissolution-précipitation intervient. Il suffit alors que le liquide constitue une phase continue au sein de l’empilement granulaire. Dans le cas d’un mouillage parfait du solide par le liquide, une couche de quelques nanomètres d’épaisseur peut suffire pour assurer cette continuité. La figure 4 a, relative au frittage de BaTiO3 en présence de 2 % en masse de LiF, est représentative de la situation observée après refroidissement lorsque la couche de liquide a une épaisseur de 1 nm.

De façon générale, plus la fraction volumique de phase liquide est importante, plus le risque de déformation de la pièce pendant le frittage est grand.

HAUT DE PAGE

4.2 Tensions interfaciales

D’une façon générale, les tensions interfaciales ont de l’influence sur toutes les étapes de frittage....

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fabrication additive – Impression 3D

(55 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Paramètres du frittage en présence d’une phase liquide
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GERMAN (R.M.) -   *  -  Sintering theory and practice, J. Wiley & Sons., New York (1996).

  • (2) - BERNACHE-ASSOLLANT (D.) -   *  -  Chimie- physique du frittage, Hermès, Paris (1993).

  • (3) - SHAW (N.J.) -   Densification and Coarsening during solid state sintering of ceramics : A review of the models. I Densification.  -  Powder Met. Int., 21(3), p. 16-21 ; II Grain Growth, 21(5), p. 31-35 ; III Coarsening, 21(6), p. 25-29 (1989).

  • (4) - YAN (M.F.) -   Effects of physical, chemical and kinetic factors on ceramic sintering.  -  In Ceramic Powder Science, Advances in Ceramics, 21, The Am. Ceram. Soc. Inc, p. 635-669 (1987).

  • (5) - BREGIROUX (D.) -   Synthèse par voie liquide et étude du frittage de la monazite au lanthane LaPO4 .  -  CEA NT SEP03/220.

  • (6) - DEFAY (R.), PRIGOGINE (I.) -   Tension superficielle...

ANNEXES

  1. 1 Thèses

    1 Thèses

    * - Outre les références pour le dossier AF 6620 et pour le dossier

    NANA KOUMTOUDJI (G.L.) - Transformations thermiques, organisation structurale et frittage des composés kaolinite-muscovite. - Université de Limoges, faculté des Sciences et Techniques (2004).

    LAFON (J.-P.) - Synthèse, stabilité et frittage d’hydroxyapatites carbonatées. - Univertisité de Limoges (2004).

    LOUET (N.) - Influence du dopage à la silice ou à l’oxyde de calcium sur le frittage et sur l’évolution microstructurale d’une alumine et ultra pure. - INSA (2003).

    Le HÔ (A.S.) - Effet de l’adjonction de bore sur les mécanismes de frittage de poudres d’un superalliage base nickel : application aux procédés de brasage-diffusion pour le rechargement de pièces de turbines aéronautiques. - Université de Poitiers, faculté des Sciences fondamentales et appliquées (2003).

    HERBST (F.) - Transformation – frittage d’alumines de transition nanostructurées : rôle des conditions de mise en forme du cycle thermique, de l’ensemencement et du dopage. - Université de Paris-Sud (2002).

    CLEMENTZ (P.) - Contribution à la modélisation du frittage avec phase liquide utilisant la théorie de l’homogénéisation. - Université de Franche- Comté, UFR des Sciences et Techniques (2002).

    CANALE (P.) - Étude des mécanismes du frittage d’un composite à matrice métallique et à dispersoïdes de diamant. - Université de Paris-Sud (2001).

    POLETTI (A.) - Contribution à l’étude du frittage des mélanges UO2+x– CeO2 traités sans atmosphère oxydante : comparaison avec le système UO2+x– PuO2 . - Université de Limoges, faculté des Sciences et Techniques (2001).

    GENDRON (D.) - Étude numérique et expérimentale du frittage à l’échelle du grain. - Université de Bordeaux...

    Cet article est réservé aux abonnés.
    Il vous reste 93% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Fabrication additive – Impression 3D

    (55 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS