Présentation
EnglishAuteur(s)
-
Didier DUPRAT : Docteur ingénieur en Génie mécanique - Bureau d’études. Aérospatiale Toulouse.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les structures aéronautiques sont soumises, lorsqu’elles sont en service, à des sollicitations fluctuant au cours du temps. Citons pour exemples la pressurisation du fuselage, les manœuvres du pilote, les turbulences atmosphériques… L’expérience montre que la répétition de cycles d’effort modifie et dégrade les propriétés des matériaux et peut conduire, à terme, à la rupture de pièces. Ce phénomène est couramment appelé « fatigue » ou « endommagement par fatigue ». Il peut se manifester pour des niveaux de contraintes relativement faibles et inférieurs à la limite d’élasticité du matériau. Dans le domaine aéronautique, la fatigue se produit en général sans déformation plastique d’ensemble mais avec une déformation plastique très localisée autour des accidents de forme (entaille, alésage, congés de raccordement…).
La prise en compte du phénomène de fatigue doit se faire dès la conception des structures.
La question ardue à laquelle le constructeur d’aéronefs doit répondre est celle du compromis nécessaire entre les exigences économiques (durée de vie la plus élevée possible, masse structurale la plus basse possible), les exigences techniques (disponibilité et performances intrinsèques des matériaux, technologie, mise en œuvre, dessin, etc.) et les exigences réglementaires (tenue d’une structure aux charges extrêmes, maintien de la navigabilité…).
Le choix de bons matériaux revêt une importance toute particulière. On a cru pendant longtemps qu’il fallait, avant tout, rechercher des matériaux possédant une résistance à la déformation la plus élevée possible. Puis, progressivement, dans de nombreux cas, on a dû s’employer à rechercher des matériaux présentant un meilleur compromis entre leur résistance et leur ténacité ou, de façon plus générale, leur ductilité. Par ailleurs, surdimensionner n’est pas non plus une bonne solution.
Ainsi, les alliages légers sont très utilisés pour la structure des aéronefs.
La première partie de ce texte présente succinctement les caractéristiques générales des alliages d’aluminium et de titane.
Les méthodes de calcul en fatigue et mécanique de la rupture adaptés à ces alliages sont détaillés dans une seconde partie.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Ingénierie des transports > Systèmes aéronautiques et spatiaux > Structures et matériaux pour l'aéronautique > Fatigue et mécanique de la rupture des pièces en alliage léger > Calcul de fatigue (chargements simples de traction)
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Calcul de fatigue (chargements simples de traction)
3.1 Principaux paramètres influant sur le comportement en fatigue
3.1.1 Paramètres d’ordre métallurgique
-
Taille des grains
Les structures à grains fins présentent une meilleure tenue en fatigue que les structures à gros grains.
-
Orientation du fibrage par rapport à la direction des efforts
L’orientation générale des grains (fibrage) confère au matériau une anisotropie plus ou moins marquée. Les caractéristiques statiques et la tenue en fatigue seront meilleures dans le sens long du fibrage que dans les autres sens (travers long et travers court).
-
Taux d’écrouissage
L’écrouissage résultant des opérations de formage a pour effet de consolider le matériau (augmentation de la limite d’élasticité), et par suite, améliore la tenue en fatigue.
-
Traitement thermique
Suivant que le traitement thermique provoque un adoucissement ou un durcissement du matériau, la tenue en fatigue sera diminuée ou augmentée. De plus, le traitement thermique peut modifier la taille des grains.
-
Santé métallurgique de l’alliage
Les défauts métallurgiques (lacunes, défauts interstitiels, précipités, inclusions) peuvent être à l’origine de l’endommagement par fatigue. Par incompatibilité des déformations, ils provoquent des concentrations de contrainte locales. L’abattement de durée de vie dépendra de leurs quantité, taille, nature, répartition, orientation par rapport aux efforts.
3.1.2 Paramètres d’ordre mécanique et géométrique
-
Nature du chargement
Le chargement peut être monotone ou variable (spectre).
Dans le cas des chargements monotones (figure 4) les paramètres prépondérants sont :
-
la forme du signal : un signal...
-
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Calcul de fatigue (chargements simples de traction)
BIBLIOGRAPHIE
-
(1) - FRANÇOIS (D.) - The influence of the microstructure on fatigue. Proceeding of the Nato Advanced Study Institute on Advances in Fatigue Science and Technologie. - École centrale des arts et manufactures, Portugal, 4-15 avr. 1988.
-
(2) - DUPRAT (D.) - Fatigue damage calculation in stress concentration fields under variable uniaxial stress. - Int. J. Fatigue, 18, no 4, p. 245-253 (1995).
-
(3) - NEUBER (H.) - Theory of stress concentration for shear-strained prismatic bodies with arbitrary non-linear stress-strain law. - J. Appl. Mech., 28, p. 544-551 (1961).
-
(4) - COFFIN (L.F.), TAVERNELLI (J.F.) - A study of the effects of cyclic thermal stresses on a ductile metal. - Trans. ASME, 76, p. 931-950 (1954).
-
(5) - MANSON (S.S.), HALFORD (G.R.) - Behavior of materials under conditions of thermal stress. Heat transfer symposium. - < >Univ. of Michigan Engineering Research Institute, p. 9-75 (1953).
-
...
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive