Présentation
EnglishRÉSUMÉ
Le dimensionnement vibratoire de capacités nucléaires est un enjeu technique majeur pour cette industrie. Le fluide contenu par ces structures modifient leur comportement dynamique et est à l’origine d’excitations vibratoires. Cet article propose une introduction générale aux techniques de simulations des interactions fluide/structure, présentant des méthodes accessibles aux ingénieurs ou des approches nouvelles et émergentes, contribuant à améliorer la précision ou la polyvalence des calculs, ou à optimiser les ressources computationnelles nécessaires aux simulations.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-François SIGRIST : Ingénieur, journaliste scientifique - (eye-π) Tours – France
INTRODUCTION
Éléments mécaniques des centrales de production d’énergie électrique ou de réacteurs de propulsion embarqués, les capacités nucléaires (cœurs de réacteurs, échangeurs de chaleur, etc.) sont dimensionnées selon un cahier des charges fixant des performances d’efficacité, de longévité et de sûreté de fonctionnement. Leur comportement vibratoire fait l’objet d’une attention particulière en phase de conception – et d’exploitation – des centrales et réacteurs.
Les méthodes de dimensionnement vibratoire de ces systèmes sont contraintes par des textes réglementaires, et établies à l’aide de résultats d’essais et de retours d’expérience et validées par des autorités de sûreté. Certaines méthodes se fondent sur des calculs numériques, rendus possibles par le développement et l’amélioration constante des techniques numériques. Dans ce contexte, la simulation numérique est un outil de plus en plus utilisé en phase de conception pour démontrer et pour justifier les performances vibratoires. Cet article, qui s’adresse principalement à de jeunes ingénieurs et chercheurs du domaine, propose un état de l’art succinct des approches analytiques et numériques accessibles pour l’étude des vibrations dans des capacités nucléaires.
Le lecteur trouvera ces références dans la rubrique « Pour en savoir plus » associée à cet article. Une bibliographie supplémentaire et des liens vers des sites internet lui proposent des ressources utiles afin d’approfondir ses connaissances sur le sujet.
Le lecteur trouvera également en fin d'article un glossaire des sigles utilisés.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Sigles
ALE (Arbitrary Lagrangian-Eulerian)
Maillage tirant parti des avantages des deux descriptions, lagrangienne et eulérienne, en limitant leurs inconvénients. La description eulérienne permet l’étude d’écoulement de fluides en un point fixe de l’espace. La description lagrangienne permet l’étude de mouvements de structures en un point qui suit le déplacement de celle-ci. Un maillage lagrangien s’adapte ainsi au mouvement – et peut parfois subir des déformations telles qu’il ne devient plus possible de calculer ! Un maillage eulérien est fixe ; il a une capacité limitée à décrire un mouvement parfois très complexe.
Co-simulation
Simulation consistant à calculer conjointement le mouvement d’une structure et l’écoulement d’un fluide. Elle se fonde sur différents outils : un code de calcul hydrodynamique permet de calculer les caractéristiques de l’écoulement ; un code de calcul de résistance mécanique permet de calculer les contraintes, déformations et mouvements de la structure ; un troisième outil, éventuellement intégré à l’un ou l’autre des outils de calcul, permet de rendre compte du couplage mécanique entre hydrodynamique et résistance mécanique. Il transfère les informations nécessaires aux deux codes précédents.
CFD (Computational Fluid Dynamics)
Simulation consistant à utiliser un code de calcul permettant de résoudre les équations régissant l’écoulement d’un fluide, par ailleurs décrit par sa loi de comportement et les volumes dans lesquels il s’écoule. La technique des volumes finis est la plus utilisée en CFD pour les applications intéressant les ingénieurs.
CSD (Computational Structural Dynamics)
Simulation consistant à utiliser un code de calcul rendant compte de la géométrie du système étudié, des lois mathématiques traduisant le comportement mécanique des matériaux dont il est constitué, et de résoudre les équations du mouvement. La technique des éléments finis est la plus utilisée en CSD pour les applications intéressant les ingénieurs.
DNS (Direct Numerical Simulation)
Simulation consistant à résoudre les équations de conservation décrivant un écoulement de fluide turbulent à l’aide d’une méthode numérique.
FEM (Finite Element Method)
Méthode...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Sigles
BIBLIOGRAPHIE
-
(1) - PETTIGREW (M.J.), TAYLOR (C.E.) - Vibration Analysis of Shell-and-Tube Heat Eexchangers : An Overview – Part 1 : Flow, Damping, Fluidelastic Instability/Part. 2 : Part 2 : Vibration Response, Fretting-wear, Guidelines. - Journal of Fluids and Structures, 18, p. 469-483/485-500 (2003).
-
(2) - LIU (L.), et al - The Fluidelastic Instability of Concentric Arrays of Tube Bundles Subjected on Cross-Flows, Pressure Vessel and Piping. - Prague (2018).
-
(3) - BLEVINS (R.D.) - Formulas for Natural Frequency and Mode Shape. - Krieger (2001).
-
(4) - SIGRIST (J.F.), GARREAU (S.) - Dynamic Analysis of Fluid-Structure Interaction Problems with Spectral Method Using Pressure-Based Finite Elements. - Finite Element Analysis in Design, 43, p. 287-300 (2007).
-
(5) - SIGRIST (J.F.), BROC (D.) - Dynamic Analysis of a Tube Bundle with Fluid-Structure Interaction Modelling Using a Homogenisation Method. - Computer Methods in Applied Mechanics and Engineering, 197, p. 1080-1099 (2008).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
« Hybrider la simulation numérique et l’intelligence artificielle » – Inria, 26 septembre 2022.
https://www.inria.fr/fr/hybrider-la-simulation-numerique-et-lintelligence-artificielle
« Immersed Boundary Method » – Science Direct, 2022.
https://www.sciencedirect.com/topics/engineering/immersed-boundary-method
« Lattice Boltzmann Method » – Science Direct, 2022.
https://www.sciencedirect.com/topics/materials-science/lattice-boltzmann-method
« Vibrations transmises à l’ensemble du corps » – Institut national de recherche et de sécurité,...
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive