Article de référence | Réf : BM5028 v1

Éléments finis stochastiques et problèmes industriels
Approche pratique des éléments finis stochastiques - Variables aléatoires

Auteur(s) : Maurice LEMAIRE

Date de publication : 10 avr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

La méthode des éléments finis (MEF) est un outil essentiel des solutions numériques des modèles de la mécanique. Elle s'appuie sur des données soumises à une forte incertitude représentée par un modèle probabiliste. Les données sont alors des variables aléatoires. La méthode des éléments finis stochastiques s'intéresse à leur propagation sur les propriétés stochastiques des variables d'intérêt (moyenne, variance...). Après un bref rappel des notations de la MEF, l'article décrit et illustre la construction du modèle stochastique des données puis présente les méthodes des perturbations et du chaos polynomial, bien adaptées à l'analyse de sensibilité. Il conclut sur leur intérêt et leurs limites pour les analyses de sensibilité et de fiabilité en conception mécanique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The finite element method (FEM) is an essential tool for obtaining numerical solutions in mechanics models. It is supported by data subject to high uncertainty, represented by a probabilistic model. The data thus comprises random variables. The stochastic finite element method addresses their propagation on the stochastic properties of variables of interest (mean, variance, etc.). After a brief review of FEM notation, the article describes and illustrates the construction of the stochastic data model. It goes on to present the disturbance and polynomial chaos methods, which are well-suited to sensitivity analysis. It concludes on their usefulness and limits for analysis of sensitivity and reliability in mechanics design.

Auteur(s)

  • Maurice LEMAIRE : Professeur émérite à l'Institut français de mécanique avancée - Conseiller scientifique de Phimeca Engineering, Aubière/Cournon, France

INTRODUCTION

La méthode des éléments finis s'est imposée comme un outil majeur de la représentation numérique des comportements en mécanique et plus largement en physique. Si les modèles sont maintenant de plus en plus évolués, incluant des hypothèses de plus en plus larges et exigeant des ressources de calcul de plus en plus grandes, ils ne font que calculer avec quatorze chiffres significatifs une réponse pour laquelle le concepteur ne dispose que de peu d'information sur les données. La théorie des probabilités offre un moyen de représenter l'incertitude de celles-ci par des variables ou des champs aléatoires. Les quantités d'intérêt résultant du calcul (contraintes, déplacements...) sont donc également aléatoires et la question est alors celle de la propagation des entrées dans le modèle de comportement, supposé représenter au mieux la réalité physique. De ces constatations est née la méthode des éléments finis stochastiques (MEFS, en anglais SFEM : « Stochastic Finite Element Method »), terme large regroupant différentes approches selon qu'elles concernent les variables ou les champs, les phénomènes statiques ou dynamiques.

L'objectif est donc simple dans son principe : connaissant le modèle stochastique des données, comment calculer le modèle de la réponse en sortie ; mais il implique des méthodologies complexes selon le but poursuivi. L'analyse de sensibilité recherche les propriétés centrales (moyenne, médiane ou variance de variables aléatoires) alors que l'analyse de fiabilité s'intéresse aux quantiles extrêmes et va jusqu'à rechercher la loi de probabilité. De par son caractère global, la méthode des éléments finis stochastiques est particulièrement bien adaptée à l'analyse de sensibilité.

L'héritage actuel des codes de calcul par éléments finis est considérable. C'est pourquoi une MEFS s'appuyant directement sur la très grande expertise de ceux-ci est proposée même si elle limite les possibilités de représentation de l'incertain. Elle est dite non intrusive car elle découple la résolution du modèle mécanique – le code de calcul est utilisé sans modifications – de celle du modèle stochastique. La méthode intrusive quant à elle, intègre le modèle stochastique dans les équations de la mécanique et oblige à modifier en profondeur le code de calcul. La MEFS non intrusive est la seule abordée dans cet article qui reste limité aux variables aléatoires après discrétisation.

Après un premier paragraphe rappelant les principes et les notations du modèle des éléments finis, le modèle stochastique des données est introduit dans un second paragraphe. La troisième paragraphe décrit les méthodes proposées : perturbation et chaos polynomial ; en les illustrant sur un exemple mécanique simple. Quelques champs d'applications sur des questions industrielles sont présentés en quatrième paragraphe et un exemple d'étude réelle commenté. Enfin, le dernier paragraphe discute l'intérêt et les limites de la MEFS pour les analyses de sensibilité et de fiabilité en conception mécanique. Il conclut par des perspectives.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

Numerical modelization   |   Probability

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm5028


Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

4. Éléments finis stochastiques et problèmes industriels

Ce paragraphe souligne tout d'abord quelques enjeux de mécanique pour lesquels la méthode des éléments finis stochastiques peut apporter une précision supplémentaire pour la conception d'un produit plus robuste et plus fiable et introduit quelques outils. Elle analyse en détail une application développée par la société Phimeca Engineering.

4.1 Quelques enjeux

La maîtrise de l'incertain en conception mécanique s'appuie tout d'abord sur les règles et règlements qui codifient le savoir-faire et sur l'assurance qualité de l'ensemble du processus conception, fabrication et maintenance. L'approche stochastique constitue un « plus » permettant de guider le processus en sélectionnant les facteurs d'importance qui conditionnent la performance. Citons quelques exemples :

  • relevant des résistances :

    • rupture par fatigue et propagation de fissures : de l'ordre de 80 % des ruptures mécaniques sont initiées sur une distribution de défauts aléatoires,

    • stabilité des structures élancées : elle est essentiellement conditionnée par la distribution des défauts géométriques ;

  • relevant des actions naturelles : séisme, houle, vent... ou d'usage : sollicitation d'une automobile par son conducteur, d'une pelle mécanique par un terrain hétérogène... ;

  • relevant des conditions de fabrication : capacité à respecter des tolérances de fabrication ;

  • relevant de la maintenance : pour la définition d'un suivi incluant un modèle a priori actualisé par les observations a posteriori.

Dans tous ces domaines, des implémentations avancées sont effectuées souvent en collaboration entre chercheurs et industriels dans le cadre de projets nationaux ou européens (références à ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Éléments finis stochastiques et problèmes industriels
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BATOZ (J.-L.), DHATT (G.) -   Modélisation des structures par éléments finis.  -  Hermès (1995).

  • (2) - De ROCQUIGNY (E.), DEVICTOR (N.), TARANTOLA (S.) -   Uncertainty in industrial practice – A guide to quantitative uncertainty management.  -  John Wiley & Sons (2008).

  • (3) - LEMAIRE (M.) -   Mécanique et incertain.  -  ISTE (2014).

  • (4) - GHANEM (R.G.), SPANOS (P.D.) -   Stochastic finite elements : a spectral approach.  -  Springer, Berlin (1991).

  • (5) - LEMAIRE (M.) -   Fiabilité des structures – Couplage mécano-fiabiliste statique.  -  Hermès Science Publication (2005).

  • (6) - LI (C.C.), Der KIUREGHIAN (A.) -   Optimal discretization of random fields.  -  J. Eng. Mech., 119(6), p. 1136-1154 (1993).

  • ...

1 Outils logiciels

PhimecaSoft – Version 3.0 : sur base Open-TURNS http://www.phimeca.com/fonctionnalites-de-phimecasoft

MATLAB http://www.mathworks.fr/products/matlab

Scilab http://www.scilab.org/fr

FERUM https://www.sigma-clermont.fr/en/ferum

OpenTURNS, issue d'une collaboration en France (EDF, EADS, Phimeca Engineering), librairie scientifique libre de modules en langage Python ( http://www.python.org/) http://www.openturns.org/

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Organismes – Fédérations – Associations (liste non exhaustive)

Association française de mécanique, groupes scientifiques et techniques : mécanique et incertain http://www.afm.asso.fr/GroupesetCommissions/ GroupesScientifiquesetTechniques/ page consultée le 1er avril 2014 http://www.gst-mi.fr page consultée le 19 mai 2014

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS