Présentation
EnglishAuteur(s)
-
Jacques VERDU : Professeur à l’École Nationale Supérieure d’Arts et Métiers de Paris (ENSAM) Laboratoire de Transformation et de Vieillissement des Polymères
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Par abus de langage nous appellerons ici « polymérisation » toute opération chimique de conversion d’un ensemble de n petites molécules (mono-mères) en n/N (N>>1) macromolécules.
-
On connaît en fait toute une variété de mécanismes, parmi lesquels on distingue en particulier :
Selon la fonctionnalité des monomères, on réalise des polymères linéaires (figures 1 1 et 1 2) ou tridimensionnels (figures 1 3, 1 4 et 1 5). Notons que l’on peut réaliser ces derniers à partir de monomères (figure 1 3) ou de polymères que l’on va « souder point par point » en utilisant des fonctions réactives distribuées le long de la chaîne (figure 1 4) ou en extrémité de chaîne (figure 1 5). Ces différents procédés peuvent être combinés. De même, plusieurs types de monomères peuvent être associés. On obtient alors des copolymères.
-
Sur le plan pratique, une opération de polymérisation pose une série de problèmes, parmi lesquels on citera les suivants.
-
Le contrôle de la structure des macromolécules dont dépendent étroitement les performances du matériau :
-
longueur de chaîne et, éventuellement, stéréorégularité dans le cas des polymères linéaires ;
-
perfection du réseau, densité de réticulation dans le cas des polymères tridimensionnels.
-
Cela implique un contrôle plus ou moins étroit de la composition initiale du milieu réactionnel et des conditions de polymérisation.
-
Le contrôle de la cinétique de réaction dont dépend en particulier la cadence de production. Une réaction trop lente se traduit par une faible productivité. Une réaction trop rapide peut poser des problèmes d’autoéchauffement rédhibitoire, lié à l’exothermicité de la réaction, de développement de contraintes internes, etc.
-
Le contrôle de la conversion finale dont dépend en partie la structure macromoléculaire. La présence de monomère résiduel se traduit notamment par des problèmes de toxicité et d’évolution du matériau via un processus de post-polymérisation…
-
Les problèmes liés à la configuration particulière de l’objet en cours de polymérisation :
-
objets de grande taille (bateaux, corps de fusée…) ;
-
profilés fabriqués en continu ;
-
circuits imprimés réalisés en grande série ; etc.
-
-
Les problèmes liés à la morphologie (au sens large), à l’état de contrainte du matériau et, plus généralement, aux caractéristiques susceptibles d’affecter le comportement mécanique de l’objet : porosités, microfissures liées aux chocs thermiques, contraintes liées aux gradients thermiques et aux variations de densité induites par la polymérisation, hétérogénéités diverses…
-
Les problèmes liés à la sécurité et à la protection de l’environnement : toxicité, risques d’explosion, recyclage de solvants, etc.
Nous nous proposons de passer brièvement en revue quelques caractéris-tiques importantes des réactions de polymérisation pour ensuite tenter d’apprécier l’apport possible des rayonnements dans ce domaine.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Aspects spécifiques de la photopolymérisation et de la radiopolymérisation
Nous avons vu 1.1 que la polymérisation photoamorcée ou radioamorcée présentait un certain nombre de caractéristiques intéressantes par rapport à la polymérisation « thermique », avantages en particulier liés à la possibilité de travailler à température plutôt basse et avec des vitesses d’amorçage très élevés. Mais en quoi ces deux méthodes diffèrent-elles l’une de l’autre ? Les principales différences nous paraissent être résumées par le tableau 1.
-
Sélectivité
Le procédé idéal serait celui où le rayonnement épargnerait le polymère déjà formé et se limiterait à une activation du monomère ou d’un amorceur.
-
La photopolymérisation s’approche de cet idéal dans de nombreux cas où l’amorceur choisi est considérablement plus photoréactif que toute autre espèce présente dans le milieu. On ne peut cependant pas exclure l’existence d’actes de photodégradation, au moins aux doses élevées.
-
La radiopolymérisation est, par contre, assez loin de cet idéal car les rayonnements ionisants, du fait de l’énergie très élevée des particules ou des quanta, attaquent presque indistinctement toutes les structures présentes, lesquelles contribuent à la production de radicaux presque proportionnellement à leur concentration.
Aux faibles taux d’avancement , le monomère étant en concentration élevée, les radicaux formés auront une probabilité élevée d’amorcer une chaîne de polymérisation.
Par contre, aux taux d’avancement élevés , le monomère étant rare, les radicaux résultant de la radiolyse vont s’orienter vers d’autres processus que la polymérisation, en particulier...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Aspects spécifiques de la photopolymérisation et de la radiopolymérisation
BIBLIOGRAPHIE
-
(1) - DECKER (C.) - Polymérisation sous rayonnement UV. - [AM 3 044] Traité Plastiques et Composites (2000).
-
(2) - JULLIEN (H.), DELMOTTE (M.) - Polymérisation sous micro-ondes et hautes fréquences. - [AM 3 046] Traité Plastiques et Composites (2006).
-
(3) - GUYOT (A.) - Polymérisation. - [J 5 830] Traité Opérations unitaires. Génie de la réaction chimique (2000).
-
(4) - CHATAIN (M.) - Comportements physique et thermomécanique des plastiques. - [A 3 110] Traité Plastiques et Composites (1993).
-
(5) - COME (G.-M.) - Cinétique chimique générale. Cinétique expérimentale. - [J 1 100] Traité Opérations unitaires. Génie de la réaction chimique (1995).
-
(6) - SENNINGER (T.) - Catalyse...
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Fournisseurs de lampes de photopolymérisation (LED et halogène)
Kerr Hawe http://www.kerrhawe.com
Dentsply http://www.dentsply.fr
Ivoclar Vivadent http://www.ivoclarvivadent.fr
HAUT DE PAGE1.2 Documentation – Formation – Séminaires (liste non exhaustive)
FDA (Organisme de formations continues pour chirurgiens dentistes). http://www.fda-france.com
ENSCL (École Nationale Supérieure de Chimie de Lille). Photo-polymérisation : principes et applications http://www.ensc-lille.fr/fc/
HAUT DE PAGECet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive