Présentation
En anglaisRÉSUMÉ
Le terme de nanocomposite décrit un matériau biphasé dont la phase de renfort présente une dispersion de taille nanométrique. La matrice peut être métallique, céramique ou polymère. Seuls les nanocomposites polymères sont présentés ici. Ces matériaux se distinguent par des niveaux de propriété très élevés en termes de tenue au feu, de rigidité et de propriétés mécaniques. Les stratégies complexes d’élaboration nécessitent souvent de rendre organophile l’argile et, même dans ces conditions, la mise en œuvre reste délicate pour espérer obtenir une dispersion satisfaisante, condition déterminante pour une maîtrise des propriétés d’usage du matériau final.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The term nanocomposite describes a biphasic material whose reinforcing phase presents a nanometric-size dispersion. The matrix can be metallic, ceramic or polymer. Polymer nanocomposites alone are presented in this article. These materials distinguish themselves by their extremely high properties in terms of fire resistance, rigidity and mechanical properties. The complex development strategies often require making the clay organophilic; even in such conditions, the implementation remains delicate for obtaining satisfactory dispersion, the determining condition for the control of the end material usage properties.
Auteur(s)
-
Jean-Michel GLOAGUEN : Université de Lille I - Laboratoire de structure et propriétés de l’état solide
-
Jean-Marc LEFEBVRE : Université de Lille I - Laboratoire de structure et propriétés de l’état solide
INTRODUCTION
L’idée d’améliorer les propriétés des matériaux en combinant deux phases aux propriétés différentes n’est pas nouvelle. On retrouve à travers l’histoire des exemples de matériaux que l’on peut considérer comme nanocomposites ; certaines colorations de peintures mayas proviennent d’inclusions de nanoparticules métalliques et d’oxyde dans un substrat de silicate amorphe. Plus récemment, en 1917, le noir de carbone a été introduit dans la composition des pneumatiques, ce qui a eu pour conséquence de multiplier par cinq leur durée de vie. Ce renfort est constitué de particules de 10 à 400 nm pour un diamètre moyen d’agrégats de 100 à 800 nm.
Par contraste avec les microcomposites conventionnels à matrice polymère, où les dimensions ou diamètres typiques des charges (particules, fibres) sont de l’ordre de plusieurs micromètres, la révolution du passage aux échelles de tailles nanométriques résulte principalement de deux paramètres : l’accroissement considérable de la surface d’interfaces et la réduction, à fraction volumique de renfort identique, des distances entre particules jusqu’à atteindre l’échelle des dimensions moléculaires caractéristiques de la matrice.
Le facteur déclenchant de l’effort de recherche dans ce domaine a été la publication en 1992 de résultats obtenus par Toyota Research sur la dispersion à l’échelle nanoscopique de silicates en feuillets (principalement argile montmorillonite) dans le polyamide 6 par polymérisation in situ. L’effort considérable de recherche observé depuis cette date au niveau mondial, dans le domaine des matériaux nanocomposites à matrice thermoplastique et renforts de plaquettes d’argile, est bien traduit par le nombre de publications et de brevets en croissance exponentielle, mais avec seulement une contribution de l’ordre de 15 % au niveau européen.
Dans ces systèmes organiques-inorganiques, la dispersion ultrafine et les interactions locales entre matrice et phase de renfort aboutissent à des niveaux de propriétés supérieures à ceux de leurs équivalents micro ou macrocomposites, et ce dès les faibles fractions d’éléments renforçants. Ces avantages se manifestent aussi bien dans la tenue au feu ou les propriétés barrière que dans la rigidité ou les propriétés mécaniques ultimes.
Les stratégies complexes d’élaboration nécessitent, dans la plupart des cas, de rendre organophile l’argile et, même dans ces conditions, la mise en œuvre reste délicate pour espérer obtenir une dispersion satisfaisante, condition déterminante pour une maîtrise des propriétés d’usage du matériau final.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Qu’est-ce qu’un nanocomposite ?
Le terme de nanocomposite décrit un matériau biphasé dont la phase de renfort présente une dispersion de taille nanométrique. La matrice peut être métallique, céramique ou polymère ; dans le cadre de ce dossier, seul le dernier type sera considéré. D’un point de vue général, il est couramment admis de classer les nanocomposites suivant le facteur de forme de la charge incorporée (rapport entre la longueur et l’épaisseur ou le diamètre). Le tableau 1 résume les dimensions caractéristiques des principales charges utilisées.
Il est ainsi possible de distinguer les nanocomposites à renforts lamellaires, fibrillaires, tubulaires, sphériques et autres.
Le facteur de forme est le paramètre clé. Pour des valeurs comprises entre 50 à 2 000, les surfaces spécifiques sont de l’ordre de 750 à 800 m2/g dans le cas de renforts lamellaires. Ainsi, l’effet renforçateur des nanoparticules est non seulement lié à leur facteur de forme, mais aussi aux interactions matrice – particule qui en résultent. En faisant abstraction de la géométrie du renfort, un facteur de forme de 500 assure un effet renforçateur équivalent à un composite à fibres longues. En outre, lorsque leur fraction volumique est supérieure à une fraction volumique critique φ m , des interactions fortes entre renforts apparaissent.
pour une géométrie de type disque et un facteur de forme de 500, la fraction critique φ m est de 0,032 % (pour une géométrie en bâtonnet φ m = 0,004 %).
Ces fortes interactions entre charges anisotropes peuvent expliquer l’amélioration globale des propriétés physiques et chimiques des nanocomposites et ce dès les très faibles taux de renforts .
D’un point de vue général, le facteur de forme est le paramètre pertinent pour différencier les différents types de nanocomposites suivant leurs propriétés. Dans l’espoir d’une amélioration des propriétés mécaniques et barrière, des renforts fortement anisotropes...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Qu’est-ce qu’un nanocomposite ?
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive