Présentation

Article

1 - STRUCTURE CHIMIQUE ET CRISTALLINE DES PCL AROMATIQUES

2 - SYNTHÈSE ET TRANSFORMATION DES PCL AROMATIQUES

3 - CARACTÉRISTIQUES DES POLYMÈRES À CRISTAUX LIQUIDES

4 - MISE EN ŒUVRE DES PCL

5 - PRINCIPALES APPLICATIONS DES PCL

Article de référence | Réf : AM3380 v1

Principales applications des PCL
Polymères à cristaux liquides (PCL) thermotropes

Auteur(s) : Jean-Michel FALGUIÈRE, Marion WAGGONER, Michael R. SAMUELS

Date de publication : 10 oct. 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Jean-Michel FALGUIÈRE : Ingénieur Civil, Université catholique de Louvain, BelgiqueZenite LCP, Product Manager, Europe

  • Marion WAGGONER : PhD in Physical Chemistry, Yale University - Senior Technology Fellow

  • Michael R. SAMUELS : Master of Science in Chemical Engineering, University of Michigan - Doctor of Philosophy in Chemical Engineering, University of Michigan - Senior Technology Fellow - Société Du Pont de Nemours

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dans les liquides, les atomes ou molécules individuels sont répartis au hasard et la connaissance de la position de l’un quelconque d’entre eux ne donne aucune indication sur la position des autres.

Dans les solides cristallins, les atomes (ou les molécules) occupent des positions définies par le réseau cristallin et la connaissance de la position de l’un des atomes (ou molécules) définit la position des autres.

Les cristaux liquides (CL) ont à la fois des caractéristiques propres aux liquides et aux solides cristallins.

Sur des distances courtes (environ 10 nm), les CL sont hautement organisés. Dans de petites régions de l’espace, appelées domaines, les atomes et les molécules sont disposés les uns par rapport aux autres comme dans les solides cristallins. Cette organisation est élevée au point que les CL réfractent les radiations électromagnétiques telles que les rayons X ou la lumière visible ce qui leur donne un aspect diffus, translucide indiquant la présence d’un liquide multiphase.

Cependant, même à l’intérieur des domaines, les forces interatomiques ou moléculaires sont relativement modérées et ceux-ci peuvent être facilement déformés sous l’effet de contraintes de cisaillement.

À plus grande distance, il y a peu d’interactions interatomiques ou moléculaires et le matériau se présente comme un liquide conventionnel. Les CL représentent donc un nouvel état de la matière et sont à la fois distincts des liquides et des solides.

Dans chacun des domaines, les propriétés physiques dépendent de la direction de la mesure. Ceux-ci sont donc hautement anisotropes. Lorsque le CL est à l’état de relaxation, cette anisotropie est peu sensible, les domaines étant orientés au hasard. À l’inverse, sous l’effet d’une contrainte de cisaillement ou de celle induite par son écoulement, le CL devient hautement anisotrope. Cet effet est à l’origine d’applications existantes ou potentielles.

Les matériaux susceptibles de f ormer des cristaux liquides peuvent aussi, suivant la température, prendre la forme solide ou liquide (cf. encadré).

À température suffisamment basse, ils formeront des solides cristallins ; à l’inverse, à température suffisamment haute, supérieure à la température dite « température d’éclaircissement », où l’énergie des atomes et des molécules est supérieure aux forces interatomiques ou moléculaires, ils formeront des liquides isotropes.

Pour les polymères à cristaux liquides, la température d’éclaircissement est généralement supérieure à la température de décomposition de ceux-ci. Son intérêt est donc purement académique.

Cristaux liquides (CL) et polymères à cristaux liquides (PCL)

Les CL sont naturellement composés de molécules comprenant des segments linéaires rigides (d’une longueur > 20 Å (2 nm) selon P. Flory [1]) avec des rapports L/D (longueur/diamètre) élevés. Des atomes individuels ou des molécules simples ne peuvent donc constituer des CL.

Si la molécule constituant le CL est unique, il s’agit d’un CL monomérique. Si, au contraire, la molécule est constituée de nombreux monomères (identiques ou non), on parlera de polymère à cristaux liquides « PCL », sujet de cet article.

Pour mémoire, les écrans à cristaux liquides utilisent un CL monomérique entre deux lames de verre ou deux films plastiques. Lors de l’application d’un faible champ électrique, les domaines cristallins s’orientent et le CL réfracte la lumière, faisant apparaître des caractères.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3380


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(204 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

5. Principales applications des PCL

Si l’utilisation des PCL est aujourd’hui limitée en comparaison avec les polymères traditionnels tels que le PBT, le PET, le PC, les polyamides..., leur avenir est prometteur et leurs possibilités d’utilisations beaucoup plus vastes qu’il n’y paraît comme le prouve le nombre croissant de développements dans des industries de plus en plus nombreuses (voir exemples, figure 19).

La réduction de masse, la miniaturisation des appareils (téléphones portables, PC, circuits imprimés, spots halogènes, systèmes d’allumage), l’augmentation des températures induite par la miniaturisation (cas, par exemple, du recyclage des gaz d’échappement), l’agressivité accrue des produits chimiques (résultant principalement de l’augmentation des températures : ce qui marchait à 130 C ne marche plus forcément à 140 C ou 150 C), la protection accrue de l’environnement, sont autant de facteurs expliquant l’intérêt croissant pour les PCL dans la plupart des industries.

En effet, comme on l’a vu, de par leur fluidité, leur tenue thermique et leurs caractéristiques électriques à haute température, leur résistance chimique à de très nombreux produits, et ce, à température élevée et leur résistance au feu intrinsèque, les PCL sont souvent les seuls polymères à pouvoir satisfaire simultanément plusieurs des critères mentionnés ci-dessus.

  • Applications électroniques

    Dans le domaine électronique, la principale application est la connectique (c’est encore à ce jour la plus importante application des PCL). Celle-ci exige des matériaux de plus en plus performants en ce qui concerne la tenue en température. En effet, les parois des connecteurs ne cessent de diminuer d’épaisseur (atteignant jusqu’à 0,4 mm), tandis que les températures de soudage par infrarouge augmentent (elles peuvent atteindre 270 C lorsqu’on utilise des pâtes de soudure sans plomb).

    La deuxième application des PCL dans l’électronique concerne les composants. Ainsi, les carcasses des bobines, les boîtiers des capacités sont de plus en plus réalisés en PCL pour satisfaire les contraintes du soudage infrarouge et de la diminution des épaisseurs.

    Quant aux composants de montage en surface, de plus en plus microscopiques, ils doivent être surmoulés avec des résines extrêmement fluides et être libres de toutes bavures.

    Les...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(204 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Principales applications des PCL
Sommaire
Sommaire

1 Données statistiques et économiques

  • Production. Consommation

    La capacité de production des PCL avoisine les 20 000 tonnes à ce jour pour une consommation voisine.

    L'utilisation des PCL est en forte croissance (% à deux chiffres) en raison de l'évolution des technologies et de la protection de l'environnement dans la plupart des industries.

  • Prix

    Les prix des PCL sont devenus très compétitifs ces dernières années, se situant aux alentours de 20 euros/kg (plus ou moins selon les volumes et la composition).

HAUT DE PAGE

2 Références...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(204 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS