Présentation
En anglaisRÉSUMÉ
L’azobenzène est une molécule photochromique qui sous l’action de la lumière passe d’un état initial appelé trans à un état final appelé cis pour revenir à son état initial. Ces deux états de photocommutation moléculaire en font l’une des molécules les plus utilisées pour les nanotechnologies. Cet article montre comment la lumière est considérée comme un signal de commutation externe idéal pour manipuler les assemblages moléculaires pour construire des systèmes et des machines à l’échelle nanométrique. Les développements futurs de ces systèmes photocommutables dans des applications pratiques ainsi que les challenges existants seront aussi présentés et mis en perspective.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Azobenzene is a photochromic molecule that under the action of light switches from an initial state (trans) to a final state (cis) and back. These two states of molecular photo-commutation make it one of the most widely used molecules in nanotechnology. This article shows how light is considered an ideal external switching signal to manipulate molecular assemblies and build assembled systems and machines at the nanoscale. Future developments of these photo-switchable systems in practical applications, along with the current challenges, are also presented and put into perspective.
Auteur(s)
-
Régis BARILLÉ : Professeur MOLTECH-Anjou, université d’Angers/UMR CNRS 6200, Angers, France
INTRODUCTION
L’azobenzène ou molécule azo est une molécule qui permet une commu-tation réversible de son système moléculaire par une réaction d’isomérisation donnant deux états différents de la molécule ayant les mêmes atomes mais dans un arrangement différent. Une différence remarquable des spectres d’absorption se fait entre les deux états de commutation par absorption d’un photon. Cette molécule qui change de couleur quand on l’éclaire fait, de plus, partie de la famille des molécules photochromiques. Cette commutation moléculaire se fait principalement en utilisant la lumière comme stimulus mais peut aussi s’activer au niveau de la molécule seule par le courant d’électrons d’une pointe d’un microscope à effet tunnel.
En utilisant les caractéristiques photocommutables particulières de l’azobenzène, une variété de systèmes fonctionnels peut être synthétisée utilisant différents matériaux, des cristaux liquides aux polymères et aux molécules biologiques. Les applications utilisant cette molécule sont nombreuses à tous les niveaux d’échelle de dimension, comme le stockage de données optiques à haute densité, les commutateurs moléculaires pour des membranes photo-activées, les portes logiques photocommandées, les rubans et les surfaces photoélastiques, les nanoparticules pour des encres photoeffaçables, les systèmes électroniques/optiques, les surfaces d’imagerie bio.
Cet article commencera par une brève description de la molécule azobenzène pouvant conduire à des systèmes en solution jusqu’aux matériaux fonctionnels et aux polymères activés par la lumière. Les exemples d’utilisation de cette molécule couvriront aussi bien les domaines de la photonique que la biologie ou l’électronique moléculaire.
Les développements futurs de ces systèmes photocommutables dans des applications pratiques ainsi que les challenges existants seront aussi présentés et mis en perspectives au regard des demandes de miniaturisation et de l’évolution de la nanotechnologie.
KEYWORDS
nanotechnology | azobenzene | photoswitching | photochromism
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Autres applications
7.1 Hydrophobicité contrôlée, mouvements d’objets
Les azobenzènes sont particulièrement populaires comme chromophores photosensibles et donc de nombreuses surfaces photosensibles composées d’azobenzènes ont été étudiées. En 2005, une technique d’autoassemblage électrostatique simple a été utilisée pour fabriquer une monocouche d’azobenzène photocommutante sur des surfaces rugueuses, pour laquelle est apparue une superhydrophobicité, et un changement des angles de contact réversible de 78,3° à 152,6°, soit 33 fois plus grand que celui d’un film plat, a été réalisé par irradiation de lumières UV et visible en introduisant des structures géométriques (piliers carrés) sur la surface du substrat. Sur la base de l’isomérisation trans-cis de l’azobenzène, une navette moléculaire photocontrôlée composée d’une structure α-cyclodextrine/azobenzène sur des surfaces d’or brut a été fabriquée et a permis de changer réversiblement la mouillabilité de la surface par transfert d’une énergie externe (la lumière) à mouvement mécanique moléculaire (figure 12).
Des films de Langmuir-Blodgett (LB) d’azobenzène préparés sur des substrats solides par un procédé classique de trempage vertical peuvent également présenter un changement d’angle de contact réversible commandé par une irradiation UV/visible. Un film multicouche hybride organique-inorganique nanoporeux d’azobenzène fluoré a montré une commutation entre une super-hydrophobicité et une super-hydrophilie avec un tel rayonnement UV/visible . Cette technique peut être utilisée pour fabriquer des zones super-hydrophobes et super-hydrophiles sur un seul échantillon à l’aide d’une irradiation de lumière UV sélective à travers un masque. Le changement de mouillabilité extrême est directement lié à une amélioration dans le moment dipolaire de surface en raison de nanostructures de surface.
Le greffage covalent de groupements azobenzène...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Autres applications
BIBLIOGRAPHIE
-
(1) - MITSCHERLICH (E.) - * - Ann. Pharm., 12, p. 311-314 (1834).
-
(2) - NOBEL (A.) - * - Ann. der Chemie und Pharmacie, 98(2), p. 253-256 (1856).
-
(3) - GRIESS (J.P.), LIEBIGS (J.) - * - Ann. Chem., 121, p. 258 (1862).
-
(4) - HARTLEY (G.S.) - The cis-form of azobenzene. - Nature, 140, p. 281 (1937).
-
(5) - ELSON (L.A.), WARREN (F.L.) - * - Biochem J., 38(3), p. 217-220 (1944).
-
(6) - RAU (H.) - Photoisomerization of azobenzènes. - In Photochemistry and Photophysics, RABEK (J.F.), Ed., CRC Press : Boca Raton. FL, États-Unis, vol. 2, p. 119-142 (1990).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
BARILLÉ (R.). – Brevet CNRS 05517-01_68307 Co-ownershipproposal Wroclaw University of Technology. Procédé de détection de conditions de turbulence utilisant l’interaction d’un faisceau laser avec un film mince photochromique et dispositif mettant en œuvre ledit procédé (2012).
HAUT DE PAGECet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive