La nanotechnologie et les nanosciences sont un domaine d’étude des systèmes qui mesurent moins d'une quarantaine de nanomètres (rappelons qu’un nanomètre correspond à un milliardième de mètre, soit 0,000 000 001 mètre). Toutefois, la nanotechnologie ne se contente pas d’étudier ces éléments puisqu’elle vise également à la fabrication et à la manipulation d’objets nanométriques et de nanomatériaux. En effet, les applications de la nanotechnologie sont multiples, et ce dans des domaines très variés. Cela explique que la nanotechnologie se situe au carrefour de plusieurs disciplines scientifiques telles que l'électronique, la mécanique, la chimie (on parle de nanochimie) ou encore la biologie et donc la médecine. Bien sûr, les nanomachines sont présentes dans notre quotidien, par exemple avec les puces des ordinateurs portables pouvant stocker de gigantesques quantités d’informations, notamment grâce à la spintronique, la microélectronique basée sur le spin de l‘électron. Mais c’est dans le domaine de la nanomédecine et avec les nanomédicaments que des avancées majeures sont attendues.
À l'origine, les choses n’étaient pas si simples puisqu’il fallait trouver le moyen de manipuler ces minuscules structures. Mais grâce à l’invention du microscope à effet tunnel ou STM (Scanning Tunneling Microscopy) dans le courant des années 80, on a pu dans un premier temps sonder les structures nanométriques, puis déplacer les atomes. Les premiers essais, que l’on doit au Dr Eigler de l'IBM Almaden Research Center, ont consisté à pousser des atomes de xénon à l’aide de l’aiguille de tungstène initialement utilisée pour sonder la topologie de surfaces nanométriques. Dans des conditions bien particulières (dans le vide quasi parfait de l'enceinte hermétique du STM et en abaissant la température à - 270 °C, c’est-à-dire la température de l'hélium liquide), il a pu déplacer les atomes et, pour la petite histoire, il est parvenu à inscrire les lettres I, B et M avec ces atomes de xénon. Depuis, fabriquer des objets nanométriques est devenu beaucoup plus simple et de nombreuses sociétés y ont recours. Ainsi, on trouve maintenant des aliments contenant des nanoparticules à l’image du dioxyde de titane (E171) présent dans de très nombreux produits alimentaires. En médecine, les nanomédicaments (nanocapsules entre autres) peuvent cibler les sites dans lesquels ils doivent agir et éviter les zones sensibles. Ils peuvent aussi avoir un rôle diagnostic en rendant visibles des tumeurs. C’est d’ailleurs en cancérologie que les nanoparticules offrent le plus de perspectives afin de limiter les quantités de médicaments chimiothérapeutiques et lutter plus efficacement contre les cellules cancéreuses chimiorésistantes (identifiables par leur pH spécifique). Par ailleurs, étant donné leur taille infime, les nanoparticules peuvent pénétrer dans les systèmes biologiques et s’y intégrer, notamment au niveau du système nerveux central. Cela n’est pas forcément sans risque puisqu’on ignore encore comment l’organisme peut réagir à plus ou moins long terme.