Présentation
En anglaisRÉSUMÉ
Cet article traite des technologies d’obtention de pièces en céramique par différents procédés de fabrication additive. Après avoir décrit le principe de la fabrication additive, les différents éléments de la chaîne numérique associée ainsi que les différents problèmes qui peuvent apparaître, les différentes technologies permettant de réaliser des pièces en matériaux céramiques sont présentées. Pour chacune d’elle, le principe technique, les avantages, limitations et quelques exemples d’applications sont fournis. Les intérêts techniques et technico-économiques sont abordés avant de terminer par les nouvelles problématiques générées par l’industrialisation et le contrôle qualité de ces procédés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article deals with the different technologies for producing ceramic parts with different additive manufacturing processes. After a presentation of the principle of additive manufacturing, the associated elements of the numerical chain and some problems that may arise, the different technologies used to produce ceramic parts are presented. For each one, the technical principle, advantages, limitations and some examples of application are provided. Technical and technical-economic utility is discussed, and the article ends with the new problems generated by the industrialization and quality control of these processes.
Auteur(s)
-
Thierry CHARTIER : Directeur de recherche – CNRS - Institut de recherche sur les céramiques (IrCer) – UMR CNRS 7315 ; Centre européen de la céramique, Limoges, France
-
Vincent PATELOUP : Maître de conférences – Université de Limoges - Institut de recherche sur les céramiques (IrCer) – UMR CNRS 7315 ; Centre européen de la céramique, Limoges, France
-
Christophe CHAPUT : Président - Société 3DCeram, Limoges, France
INTRODUCTION
La fabrication additive, initialement intitulée « prototypage rapide », rassemble des procédés innovants de fabrication de pièces couvrant un large champ d’applications. Elle est basée sur le principe de la fabrication de pièces par ajout de matière, contrairement à tous les procédés dits « conventionnels » ou « soustractifs » qui produisent des pièces par déformation ou enlèvement de la matière.
Historiquement, la fabrication additive a été développée pour réaliser rapidement des prototypes ou des maquettes d’objets dans le but d’en tester le concept ou le design. Elle s’intègre désormais pleinement dans les procédés de conception de produits et se trouve d’autant plus bénéfique qu’elle diminue les risques liés au développement de tout projet en amont, tout en maîtrisant les coûts associés. Elle permet en effet de réaliser assez facilement des pièces dont la géométrie est identique à celle des pièces de la maquette numérique sans avoir besoin de réaliser une étude d’industrialisation.
La fabrication additive peut être référencée sous différentes appellations : impression 3D, fabrication par couches, prototypage. Elle est aussi très souvent associée aux termes anglophones suivants : Rapid Manufacturing, Rapid Prototyping, Solid Freeform Fabrication (SFF) ou Freeform Fabrication, Digital Fabrication, Automated Freeform Fabrication, 3D Printing, Solid Imaging, Layer-Based Manufacturing or Prototyping.
Le principe fondamental de la fabrication additive est de distribuer et consolider la matière apportée selon la géométrie de la pièce. Pour réaliser cette opération, il a fallu résoudre les quatre problèmes suivants :
-
l’accessibilité : chaque voxel élémentaire d’une pièce à fabriquer doit être accessible au moins une fois durant le cycle de réalisation. Le mot « voxel » est la contraction de « VOlumetric pixEL ». Il s'agit d'un pixel 3D utilisé pour la représentation 3D dans l'espace d'un objet ;
-
la matière : la matière doit devenir solide durant sa distribution dans un temps le plus court possible afin de minimiser le temps de fabrication ;
-
la topologie : la totalité du volume de la pièce fabriquée doit être décrite, contrairement aux procédés par enlèvement de matière où seules les surfaces frontières sont nécessaires ;
-
la précision : la quantité de matière déposable doit être la plus faible possible pour répondre à toutes les topologies de pièces et de formes. Une précision géométrique comparable aux procédés par enlèvement de matière est souhaitée.
Afin d’exister, la fabrication additive a donc dû répondre à ces quatre problèmes mais elle a surtout dû en améliorer les solutions afin d’optimiser ses performances et ainsi tendre à devenir un procédé industriel utilisable pour de la production en petite série.
Cet article propose, via un bref historique, une description du principe de la fabrication additive et de la chaîne numérique associée, puis une revue détaillée de l’ensemble des procédés de fabrication additive permettant la réalisation de pièces en matériaux céramiques. Il montre également comment ces défis ont été relevés, puis les procédés additifs développés et optimisés depuis leur émergence, dans les années 1980.
Le développement des procédés de fabrication additive est intimement lié au développement des outils informatiques dédiés à l’industrie. En effet, la forte évolution des capacités de calcul informatique depuis les années 1960 a permis l’émergence d’outils numériques de conception assistée par ordinateur (CAO), de fabrication assistée par ordinateur (FAO) et de machines à commande numérique (MCN). Ces trois maillons de la chaîne numérique d’obtention de produits étant nécessaires à la réalisation de pièces par fabrication additive, l’histoire de cette dernière est logiquement dictée par le développement de chacun de ces maillons.
Le développement historique des technologies de fabrication additive est ainsi marqué par les quelques étapes clés suivantes :
-
années 60 : même si les procédés de prototypage rapide émergent vers la fin des années 80, leur histoire commence dès la fin des années 60 lorsque le professeur Herbert Voelcker (université de Rochester, États-Unis) s’interroge sur les possibilités de réaliser des objets avec une machine contrôlée par un ordinateur. Celui-ci a alors tenté d’automatiser la programmation d’une machine à commande numérique à partir d’une géométrie réalisée sur un ordinateur ;
-
années 70 : Herbert Voelcker développe des théories sur la modélisation volumique ainsi que des algorithmes mathématiques dédiés à la modélisation 3D par ordinateur . Ces théories seront à la base de la CAO moderne utilisée pour modéliser tout objet mécanique ;
-
années 80 : en 1984, Charles Hull (cofondateur de la société 3DSystems, États-Unis) dépose le premier brevet décrivant la fabrication de pièces par couche en utilisant un matériau réactif aux ultraviolets (UV) : le procédé de stéréolithographie est né . En 1987, Carl Deckard (université d’Austin, États-Unis) imagine la construction d’une pièce couche par couche. Il réalise alors des modèles 3D en utilisant une source laser qui fond une poudre métallique et crée le procédé de frittage sélectif par laser communément nommé Selective Laser Sintering (SLS) ;
-
aujourd’hui : après une étape de modélisation 3D assistée par ordinateur, toute pièce peut être imprimée dans différents matériaux (plastiques, céramiques, métaux) ; en utilisant plusieurs procédés.
Avec la tombée dans le domaine public de plusieurs brevets protégeant les différents procédés de fabrication additive, les années 2010-2015 ont vu apparaître une multitude de machines de fabrication additive. Ces machines, dont les prix s’étendent de quelques centaines d’euros à plusieurs centaines de milliers d’euros, permettent de couvrir l’ensemble des demandes du particulier soucieux de réaliser une maquette de modélisme à l’industriel souhaitant produire une pièce fonctionnelle non réalisable par procédé conventionnel ou de petites séries.
MOTS-CLÉS
KEYWORDS
ceramic | additive manufacturing | numerical chain
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mécanique > Travail des matériaux - Assemblage > Procédés de fabrication additive > Élaboration de pièces céramiques par fabrication additive > Classification des procédés de fabrication additive
Accueil > Ressources documentaires > Génie industriel > Industrie du futur > Industrie du futur : outils technologiques > Élaboration de pièces céramiques par fabrication additive > Classification des procédés de fabrication additive
Accueil > Ressources documentaires > Mécanique > Fabrication additive – Impression 3D > Enjeux, procédés et marchés > Élaboration de pièces céramiques par fabrication additive > Classification des procédés de fabrication additive
Accueil > Ressources documentaires > Innovation > Industrie du futur > Industrie du futur : outils technologiques > Élaboration de pièces céramiques par fabrication additive > Classification des procédés de fabrication additive
Cet article fait partie de l’offre
Verres et céramiques
(65 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Classification des procédés de fabrication additive
Généralement, les procédés de fabrication additive sont classés en fonction de l’état du matériau support servant à construire la pièce souhaitée. Ainsi l’ensemble de ces procédés peut être classé en quatre catégories :
-
matériaux solides 0D (poudres/grains) ;
-
matériaux solides 1D (filament) ;
-
matériaux solides 2D (feuilles/plaques) ;
-
suspensions et pâtes.
En respectant cette classification, les procédés de fabrication additive de pièces céramiques les plus courants sont présentés ci-après .
3.1 Procédés à base de matériaux solides 0D
Les procédés partant de poudres / grains céramiques sont :
-
le frittage laser sélectif d’un lit de poudre : Selective Laser Sintering (SLS) (voir figure 24) ;
-
la consolidation d’un lit de poudre par dépôt de liant : Binder Jetting (voir figure 16).
3.2 Procédés à base de matériaux solides 1D
Le procédé est appelé « extrusion 3D » d’un filament de matière à base de céramique : Fused Deposition Modeling (FDM) ou Robocasting (voir figure ...
Cet article fait partie de l’offre
Verres et céramiques
(65 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Classification des procédés de fabrication additive
BIBLIOGRAPHIE
-
(1) - CHUA (C.K.), LEONG (K.F.), LIM (C.S.) - Rapid Prototyping : Principles and Applications (with Companion CD-ROM). - 2nd ed. World Scientific (2003).
-
(2) - REQUICHA, VOELCKER - Solid Modeling : A Historical Summary and Contemporary Assessment. - IEEE Comput Graph Appl ; 2 :9-24. doi :10.1109/MCG.1982.1674149 (1982).
-
(3) - HULL (C.) - * - . – Apparatus for production of three-dimensional objects by stereolithography, (n.d.).
-
(4) - DECKARD (C.) - * - . – Method and apparatus for producing parts by selective sintering, (n.d.).
-
(5) - ZOCCA (A.), COLOMBO (P.), GOMES (C.M.), GÜNSTER (J.) - Additive Manufacturing of Ceramics : Issues, Potentialities, and Opportunities. - J Am Ceram Soc ; 98 :1983-2001. doi :10.1111/jace.13700 (2015).
-
(6) - SACHS (E.),...
DANS NOS BASES DOCUMENTAIRES
-
Fusion laser sélective de lit de poudres métalliques.
-
Fabrication additive – Principes généraux.
ANNEXES
L’Union de normalisation de la mécanique se charge, via sa commission UNM 920, de recenser l’ensemble des normes ISO et CEN traitant de la fabrication additive.
( http://www.unm.fr/main/core.php?pag_id=53&=249)
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Machines de fabrication additive céramique par technologie SLS :
Phenix systems
http://www.phenix-systems.com/fr
Machines de fabrication additive céramique par stéréolithographie :
3DCeram
Machines de fabrication additive céramique par jet d’encre :
Ceradrop
Machines de fabrication additive céramique par aérosol :
Optomec
Machines de...
Cet article fait partie de l’offre
Verres et céramiques
(65 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive